《化学反应动力学-5》由会员分享,可在线阅读,更多相关《化学反应动力学-5(79页珍藏版)》请在金锄头文库上搜索。
1、1,第五章 催化反应 5.1 催化作用和基本特征 5.2 均相催化 5.3 自催化和振荡反应 5.4 酶催化反应 5.5 复相催化和气体表面反应 5.6非均相光化学催化,2,5.1 催化作用和基本特征 一、催化作用 催化作用:是对化学反应速率的一种作用。反应物种以外的少量其它组分能引起反应速率的显著变化,而这些物种在反应终了时,不因反应而改变其数量和化学性质。我们称这类作用为催化作用。 催化剂公认的定义:“它是一种能改变化学反应的速率而本身不发生任何化学变化的物质。”,3,二、催化作用基本特征 1、催化作用根本上是反应历程的改变,4,若某一反应,为非催化历程时:,有催化剂 C 存在时,反应历程
2、为:,对M作稳态近似,得:,反应速率:,5,催化历程的反应速率:,总的反应速率 r 为:,由于 kcC k0 ,故一般可认为 k kc C,2、催化作用不改变体系的热力学平衡。只改变达到平衡的时间。,6,5.2 均相催化(Homogeneous Catalysis)均相催化:催化剂与反应物在同一相中。,一、气相中的均相催化作用,例1:,慢,当 NO 存在时:,(1) + 2(2):,7,例2:Br2对臭氧分解的催化作用,Br2对臭氧分解的催化机理如下:,引发,传播,终止,(2)+(3):,8,对Br和BrO稳态近似,得:,反应速率:,9,Diagram showing how the rate
3、 of reaction will vary with the concentration of Br2,with contributions from the catalysed and an uncatalysed reaction mechanism。,10,二、液相中的均相催化反应,1、金属离子为催化剂的反应,反应非常缓慢。,当 Ag+存在时,可能的反应机理如下:,11,反应速率:,对 Tl2+ 和 Ag2+ 作稳态假设,得:,12,反应起始阶段:r = k1 Ag+ Ce4+,反应后期:,13,2、酸催化作用 以丙酮卤化为例,在酸性溶液中,反应速率正比于丙酮和H+的浓度,但与卤素的浓
4、度无关。,14,酮式 ( keto) 烯醇式 (enol),15,(2),(3),(4),16,形成烯醇的速率:,将 YH+ = K1 Y H3O+ 代入,得:,因 OH- H+ = Kw, H3O+ A- = Ka HA, 故:,17,反应的最后一步为:,(5),式中:k0 = K1 k2 Kw,,(对 Br2、I2,反应异常迅速。),丙酮的卤化速率为:,kHA = K1 Ka k4,18,速率常数 k0、kH+和 kHA的测定:,(a) 在无弱酸存在时,准一级速率常数:,(i) 在一系列固定 H3O+下, r CH3COCH3 作图, 得 一系列 k( H3O+). (ii) k H3O+
5、 作图,截距 = k0;,斜率 =,19,(b)有弱酸存在时准一级速率常数:,(i)保持 pH 恒定,在一系列固定HA下,r CH3COCH3 作图,得 k( HA)。 (ii) k HA 作图斜率 = kHA。,20,3、碱催化反应,快反应,反应速率 r 为:,21,同时考虑酸和碱催化的反应速率为:,只有特殊酸和特殊碱催化反应的速率常数为:,22,lg k pH 作图有三个线性区:,(a) pH 较小时,,斜率为 -1。,(b) pH 较大时,,斜率为 +1;,(c) pH处于两者之间,第一项最大,斜率为 0。,23,A diagram based on equation(1) showin
6、g how lgk varies with pH, with linear portions corresponding to the predominance of the acid-catalysed, solvent-catalysed and base-catalysed mechanisms.,24,4、络合催化反应,甲醇低压羰化制乙酸,催化机理:,(2),I-,(1),25,(3),26,5.3 自催化和振荡反应 一、自催化(Autocatalysis ) 1、自催化反应其特征为反应产物(或中间物)可以起催化剂的作用。 2、自催化反应的动力学特征考虑反应: A B + 若自催化反应
7、为产物之一 B 作为反应物:,27,A + B 2B + ,由物料平衡,得:B = A0 + B 0 A,积分后,得:,28,将 A = A0 + B 0 - B 代入,,整理后得:,当 t = 0 时,,B = B0,t ,,B A0 + B0,29,t* 时,dB/dt 达最大,为一拐点(inflection point),30,二、化学振荡反应( Chemical Oscillations ),1、化学振荡反应,反应体系中某些物质的浓度随时间(或空间)发生周期性变化的现象。中间物种的浓度随时间的推移发生持续的振荡,出现无数极大和极小点,但是,反应物和最终产物的浓度则分别节节降低和增加。,
8、31,2、Lotka模型,总反应:,32,对X、Y作稳态近似:dX/dt = 0, dY/dt = 0,k2 Yss = k1 A k2 Xss = k3 若 A 恒定, 令:A = A0,Yss = Y0 Xss = X0,则k2Y0 = k1A0 k2 X0 = k3 考虑当 X、Y 浓度偏离稳态值时发生的情况:X = X + X0 Y = Y + Y0,33,由(1)式:,k1A0 = k2Y0,忽略XY项得:,同理可得:,X = X + X0 Y = Y + Y0,34,a k2X0,b k2Y0,该微分方程的可能解为:,35,( a k2X0,b k2Y0),( k2Y0 = k1A
9、0,k2 X0 = k3),36, = |1/| = |k1k3A0|1/2 该函数为角频率 的振荡。 因为 cos(t) 的振荡函数可写为:exp( it )+ exp( -it ),37,3、,反应时,CeIV、CeIII 和 Br- 的浓度可以发生周期性变化。,别诺索夫-柴波延斯基(Belausov-Zhabotinsky)反应,38,39,5-4 酶催化反应 一、酶催化反应特点 1、具有高度选择性。 2、催化效率高。 3、所需反应条件温和,一般在常温常压下进行。 4、酶反应历程复杂。 (1)反应速率方程复杂。 (2)对酸度和离子强度十分敏感。 (3)与温度关系密切。,40,二、酶催化反
10、应历程动力学 以最简单反应历程为例:,S:底物; E:酶。,41,若分解产物为 2 个,则:k-2 0 。 反应历程可写为:,反应速率:,42,对中间体 ES 作稳态近似,得:,据物料平衡,E = E0 - ES, 代入(2)式,并整理得:,43,将(3)式代入(1)式:,即:,44,令:a = k2 E 0, b = (k-1 + k2) / k1 = KM ( KM:米氏常数) 故有:,a、b 求算:,45,(a)作 r S 图,a = k2 E 0,rmax = k2 ES,= k2 E 0,46,(b) 线性法,1/r 1/S 作图,得直线, 斜率/截距 = b; 1/截距 = a,4
11、7,三、酶催化阻化,以反应 S P 为例:,1、竞争阻化(Competitive inhibition),48,、未竞争阻化(Uncompetitive inhibition),3、非竞争阻化(Noncompetitive inhibition),49,以竞争阻化为例进行讨论:,50,由物料平衡,得:,KI:解离平衡常数,51,解(6)、(7)联立方程,得:,52,5-5 复相催化反应历程和表面反应,一、复相催化反应历程 复相催化反应进行的五个基本步骤: (1)反应物由体相向催化剂表面扩散。 (2)反应物在活性中心上吸附 (3)进行表面反应 (4)产物在表面脱附 (5)产物由催化剂表面扩散到体
12、相。,吸附,物理吸附,化学吸附,53,二、化学吸附与 Langmuir吸附等温式 1、化学吸附基本特征(1) 单分子层吸附(2) 化学吸附是在吸附剂表面特定部位上发生。(3) 通常吸附需要活化能,但有例外。(4) 吸附热与一般化学反应的热效应相同,其数量级约为40 400 kJ/mol。(5) 在吸附剂表面上的化学吸附物种可能是定位的也可能是非定位的。(6) 吸附前的物种与吸附后的物种有着化学本质的差异。,54,2、Langmuir吸附等温式,langmuir吸附等温式为:,A:表面被A分子覆盖的分率。 KA:吸附平衡常数或吸附系数。,KA = ka/kd,55,当有 N 种气体被吸附时,la
13、ngmuir吸附等温式可写为:,langmuir吸附等温式的适用条件: (1) 吸附与脱附达平衡。 (2) 单分子层吸附。 (3) 各活性中心等价。 (4) 吸附或脱附过程与活性中心所占分率无关。,56,三、动力学方程推导 (一)表面反应为决速步 1、表面单分子反应:A(g) B(g) 设反应历程为:,决速步,反应速率:,57,(a)KAPA 1 时:,r = kr KAPA 一级反应 速率常数 k 为:k = kr KA 表观活化能为:,58,(b)KAPA 1 时:,r = kr 零级反应。Ea = Ea, r,Figure Enthalpy profile for reaction ,w
14、here Hads refers to the adsorption of A and Ea,r to the reaction of adsorbed A to give B.,59,若有 N 种非反应物也能被表面吸附,则:,( i A ),60,若抑制剂被强烈吸附, 即 Ki Pi 1+ KAPA :,反应对A为一级,与抑制剂分压成反比。,61,2、表面双分子反应,(1)Langmuir-Hinshelwood历程,决速步,62,(a)若 A 和 B 均为弱吸附,则:r krKAKBPAPB,二级反应,k = krKAKB Ea = Ea,r + H ads,A + H ads,B,63,
15、(b) 若 A 是很弱的吸附,则:,PA一定时, r 对 PB 作 图:,当 PB 增加时,反应速率先加快,经过一极大值后又下降。,64,(c)若 B 是强吸附,,而 A 为弱吸附,Ea = Ea, r + Hads, A - Hads, B,65,(2) Langmuir-Rideal历程,决速步,说明:B 可被吸附,但吸附态的 B 不与 A 发生反应。,66,当 A 为很弱吸附时:,若保持 PA不变,速率随 PB的增加而单调上升。,67,(二)反应物的吸附为决速步 若反应历程为:,(1),(2),(3),(4),68,若 A 的吸附为决速步,则:,注:A不能直接用langmuir吸附等温式来表示。,(2)+(3)+(4):,(近似平衡),即反应过程中 A 是一平衡值。所以一定存在一平衡分压 PA*, 使 langmuir 吸附等温式成立,即:,69,因表面反应:,为近似平衡,所以有:,Kr 为表面反应的平衡常数。,将各相应的 langmuir 吸附 等温式代入:,70,71,反应速率 r:,将 A、B、C 及 PA* 式代入,得:,