输煤转运点通风除尘系统设计

上传人:xh****66 文档编号:56756944 上传时间:2018-10-15 格式:DOC 页数:10 大小:94KB
返回 下载 相关 举报
输煤转运点通风除尘系统设计_第1页
第1页 / 共10页
输煤转运点通风除尘系统设计_第2页
第2页 / 共10页
输煤转运点通风除尘系统设计_第3页
第3页 / 共10页
输煤转运点通风除尘系统设计_第4页
第4页 / 共10页
输煤转运点通风除尘系统设计_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《输煤转运点通风除尘系统设计》由会员分享,可在线阅读,更多相关《输煤转运点通风除尘系统设计(10页珍藏版)》请在金锄头文库上搜索。

1、工业通风课程设计 1 输煤转运点通风除尘系统设计 摘要:皮带输煤系统的转运点是钢铁厂主要的产尘环节。由于落差、机械转动 等原因产生大量扬尘,导致转煤点粉尘浓度急剧加大,成为作业车间最主要的 污染源。极大地影响工人的身体健康和生产安全。文章针对粉尘产生的原因和 现场实际情况,选择合适的除尘方式,即湿式除尘方式,通过合理设计除尘系 统,消除在输煤转运过程中产生的粉尘,同时除尘器排放的粉尘浓度也达到国 家标准,极大的改善了作业环境。 关键词:输煤转运站;除尘;粉尘;设计 Abstract: the transshipment point of belt conveying system is the

2、 main link of producing dust steel mills. Due to the gap, rotating machinery, such as the cause of a large number of dust, lead to turn point of coal dust concentration increased sharply, the main pollution sources become job shop. Greatly affect the workers health and production safety. In this pap

3、er, the causes of dust and the scene actual situation, choose the right means of dust removal, namely, wet dusting method, through the reasonable design of dust removal system, eliminate the dust produced in the process of coal transport, at the same time, the dust concentration of dust emission rea

4、ches the national standard, improved the working environment greatly. Key words: coal conveying transfer station; Dust removal; Dust; design 工业通风课程设计 2 前言 在目前常用的除尘技术中有重力除尘技术、离心除尘技术、湿式除尘技术、 袋式除尘技术和电除尘技术等。重力除尘技术设备简单、投资小、便于操作、 运行费用低,但因其除尘效率低,处理量有限而受到限制,针对转运站的实际 情况,重力除尘技术远不能处理 6000 m3/h 的气体量;袋式除尘技术处理效率

5、高,但结构复杂,清灰很麻烦,日常管理很繁琐,投资大;电除尘技术处理效 率高,但投资巨大而且运转站内面积有限,对工作人员要求高,运行费用高, 不便于管理;湿式除尘技术处理效率高,课高达 99.5%以上,能有效地将直径 为 0.1-2m 对人体危害大的例子从气流中除去,其结构简单,占地面积小,投 资低,处理气量大。所以本系统决定采用湿式除尘技术。由于: =1-(0.15/5)=97% 所以本设计选用卧式旋风水膜除尘器,此除尘器的效率在98%左右。查的卧式 旋风水膜除尘器的阻力为8001200Pa。 湿式除尘是利用水与含尘气体充分接触,将尘粒洗涤下来而使气体净化的方 法。这种除尘方式的效率高,除尘器

6、结构简单,造价低,占地面积小,操作维 修方便,特别适宜于处理高温、高湿、易燃、易爆的含尘气体。此外,在除尘 的同时还能除去部分气态污染物。因此广泛应用于工业生产的各部门的空气污 染控制与气体净化。 湿式除尘器广泛用于冶金、矿山、发电、供热等行业,对于电站锅炉、工业 锅炉、采暖锅炉及工业窑炉都有很高的除尘脱硫效果。排放浓度达到了国家环 境保护标准锅炉大气污染物排放标准GB13271-2001 的要求。 所有湿式除尘器的基本原理都是让液滴和相对较小的尘粒相接触/结合产生容 易捕集的较大颗粒。在这个过程中,尘粒通过几种方法长成大的颗粒。这些方 法包括较大的液滴把尘粒结合起来,尘粒吸收水分从而质量(或

7、密度)增加, 或者除尘器中较低温度下可凝结性粒子的形成和增大。在所有上述微粒成长方 法中,第一种方法是目前为止最具意义的一种捕集方法,实际应用于大多数湿 式除尘器中。 惯性撞击 工业通风课程设计 3 如果微粒分散于流动气体中,当流动气体遇到障碍物,惯性将使微粒突破绕 障碍流动的气体流,其中一部分微粒将撞击到障碍物上。这种事件发生的可能 性依赖于几个变数,尤其是微粒具有的惯性大小和障碍物的尺寸大小(在湿式除 尘器中,障碍物就是液滴)。在除尘器中,惯性撞击发生在粉尘颗粒和相对较 大的液滴之间。 最常用的产生惯性撞击的机械设备尘粒和水滴存在于移动的气 体流中。混合物进入收缩段,横断面积减小从而气体的

8、流动速度增加。相对较 大的液滴需要一些时间加速,而小的颗粒不需要(根据物质的相对惯性)。 拦截 如果小颗粒在流体中围绕障碍物移动,它将可能由于颗粒的相对大的物理尺 寸与障碍物接触。这也会发生在粉尘颗粒和液滴的相对运动中。 扩散 空气动力学粒径小于 0.3m(比重为 1)的小颗粒主要通过扩散捕集,因为 它们质量小不大可能发生惯性撞击,且物理尺寸小不容易被拦截。微小颗粒从 高浓度区域向低浓度区域移动的过程称为扩散。扩散主要是布朗运动的结果, 布朗运动即微小颗粒在周围气体分子和其他微粒碰撞下的无规则自由运动。当 这些微粒被捕集到一个液滴里面,液滴邻近区域的微粒浓度降低,其他微粒又 一次从高浓度区域向

9、液滴邻近区域低浓度区域移动。 冷凝 如果通过控制流动气体流的热力学性质来引起气流冷凝,微粒在冷凝过程中 能起到成长核的作用。然后表面覆盖了液体的微粒更容易通过上述主要捕集机 理被捕集。通常获得冷凝的方法是把较低压力下的蒸汽和气体压缩到较高的压 力,在饱和气流中引入蒸汽,或/和直接冷却气流。 静电充电 当微粒和液滴之间存在不同的静电荷时,将更能有效使尘粒和液滴相结合。 静电洗涤器就是应用这个机理加强了粉尘和水滴的吸引从而提高了粉尘的收集 效率。1 工业通风课程设计 4 目录目录 1绪论 1.1粉尘的危害 1.1.1粉尘对人体健康的危害 1.1.2粉尘爆炸危害 1.1.3粉尘对能见度的影响 1.1

10、.4粉尘对设备的影响 2通风除尘系统设计 2.1通风管道轴测图 2.2系统参数确定 2.2.1管径和单位长度摩擦确定 2.2.2确定各管段的局部阻力系数 2.2.3各管段局部阻力 2.3阻力平衡 2.4计算系统的总阻力 2.5选择风机 3结语 工业通风课程设计 5 1 1绪论绪论 1.1粉尘的危害 11.1粉尘对人体健康的危害 (1)对呼吸系统的影响 粉尘对机体最大影响最大的是呼吸系统损害,包括尘肺、粉尘沉着症、上呼 吸道炎症、游离二氧化硅肺炎、肺肉芽肿和肺癌等肺部疾病。 尘肺是由于生产环境中长期吸入生产性粉尘而引起的以肺组织纤维化为主的 疾病。 (2)局部作用 粉尘作用于呼吸道粘膜,早期引起

11、其功能亢进、粘膜下毛细血管扩张、充 血,粘液腺分泌增加,以阻留更多的粉尘,长期形成粘膜肥大性病变,然后由 于粘膜上皮细胞营养不足,造成萎缩性病变,呼吸道抵御功能下降。粉尘产生 的刺激作用,可引起上呼吸道炎症。皮肤长期接触粉尘可导致阻塞性皮脂炎、 粉刺、毛囊炎、脓皮病。金属粉尘还可引起角膜损伤、浑浊。沥青粉尘可引起 光感性皮炎。 (3)全身中毒作用 含有可溶性有毒物质的粉尘如含铅、砷等,可在呼吸道粘膜很快溶解吸收, 导致全身中毒,呈现出相应毒物的急性中毒症状。 1.1.2粉尘爆炸危害 分散在空气中的某些粉尘,在同时具备氧气、高温源、可燃粉尘、容器条件 下,会燃烧、爆炸。粉尘的爆炸在瞬间产生,伴随

12、着高温、高压、势空气膨胀 形成的冲击波具有很大的摧毁力和破坏性。 1.1.3粉尘对能见度的影响 当光线通过含尘介质时,由于粉尘对光的吸收、散射等作用,光强会减弱, 出现能见度降低的情况,这给工人的操作和检修带来极大的不便,同时也会给 安全带来隐患。 1.1.4粉尘对设备的影响 工业通风课程设计 6 含尘气流在运动时与壁面冲撞,产生切削和摩擦,引起磨损。粉尘污染还能 影响设备的寿命。 2 2通风除尘系统设计通风除尘系统设计 2.1通风管道轴测图 (1)对各管段进行编号,标出管段长度和各排风点的排风量。轴测图如图1所 示。 (2)选定最不利环路,本系统选134567为最不利环路。 (3)根据各管段

13、的风量及选定的流速,确定最不利环路上各管段的断面尺寸和 单位长度摩擦阻力。 图1通风系统轴测图 2.2系统参数确定 根据表6-4,输送含有煤尘的空气时,风管内最小风速为,垂直风管为 11m/s,水平风管为13 m/s。 考虑到除尘器及风管漏风,管段6以及7的计算风量为60001.05=6300m3/h。 2.2.1管径和单位长度摩擦确定 管段1 工业通风课程设计 7 根据L1=3000 m3/h(0.83 m3/s) 、v1=11m/s,由附录9查出管径和单位长度摩 擦。阻力。所选管径尽量符合附录11的通风管道统一规格。 D1=320mm Rm1=4.6Pa/m 管段3 D3=280mm Rm

14、3=7.2Pa/m 管段4 D4=400mm Rm4=5Pa/m 管段5 D5=400mm Rm5=5Pa/m 管段6 D6=400mm Rm6=3.2Pa/m 管段7 D7=400mm Rm7=3.2Pa/m 确定管段2的管径及单位长度摩擦阻力 管段2 D2=320mm Rm2=4.6Pa/m 2.2.2确定各管段的局部阻力系数 查附录10,确定各管段的局部阻力系数。 (1)管段1。伞形罩=90,=0.11,90弯头, R=2.5D,=0.13,=0.24。 (2)管段2。伞形罩=90,=0.11,90弯头,R=2.5D,=0.13,三通 =0.88,=,1.12。 (3)管段3。135弯头

15、,R=2.5D,=0.17,三通=0.21,=0.38。 (4)管路4。三通=0.20,=0.20。 (5)管路5。90弯头2个,R=2D, =0.15, (6)管路6。90弯头2个,R=2D, =0.15,除尘器出口渐缩管=0.613,风机 工业通风课程设计 8 入口处变径管的局部阻力忽略不计,=20.15+0.613=0.913。 (7)管路7。风机出口=0.1,90弯头, R=2.5D,=0.13,=0.1+0.13=0.23, 表1 管道水利计算 管段 编号 流量Q m3/h(m3/s) 长度 L(m ) 管径 D(mm ) 局部阻 力系数 局部 阻力 Z(Pa ) 单长度摩 擦阻力

16、Rm(Pa/m) 摩擦 阻力 Rml(Pa) 管断阻 力 (Pa) 1 3000(0.83 ) 2.43200.2417.4244.611.0428.464 2 3000(0.83 ) 2.43201.1281.3124.611.0492.352 3 3000(0.83 ) 22800.3838.5327.214.452.932 4 6000(1.67 ) 24000.220.2851030.28 5 6000(1.67 ) 34000.1530.4251545.42 6 6000(1.67 ) 44000.91366.2843.212.879.084 7 6000(1.67 ) 154000.2316.6983.24864.698 2.2.3各管段局部阻力: Z=v2/2 其中:局部阻力系数; V气流速度,m/s; 气体的密度,kg/ m3 工业通风课程设计 9 管路1:z1=0.2411111.2/2=17.424Pa

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号