微分方程和差分方程简介精简版

上传人:mg****85 文档编号:55411689 上传时间:2018-09-29 格式:PPT 页数:61 大小:1.54MB
返回 下载 相关 举报
微分方程和差分方程简介精简版_第1页
第1页 / 共61页
微分方程和差分方程简介精简版_第2页
第2页 / 共61页
微分方程和差分方程简介精简版_第3页
第3页 / 共61页
微分方程和差分方程简介精简版_第4页
第4页 / 共61页
微分方程和差分方程简介精简版_第5页
第5页 / 共61页
点击查看更多>>
资源描述

《微分方程和差分方程简介精简版》由会员分享,可在线阅读,更多相关《微分方程和差分方程简介精简版(61页珍藏版)》请在金锄头文库上搜索。

1、三、利用Matlab求微分方程的解析解,结 果:u = tg(t-c),解 输入命令: y=dsolve(D2y+4*Dy+29*y=0,y(0)=0,Dy(0)=15,x),结 果 为 : y =3e-2xsin(5x),解 输入命令 :x,y,z=dsolve(Dx=2*x-3*y+3*z,Dy=4*x-5*y+3*z,Dz=4*x-4*y+2*z, t);x=simple(x) % 将x化简y=simple(y)z=simple(z),结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2ty = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+

2、c3)e2tz = (-c1e-4t+c2e-4t+c1-c2+c3)e2t,返 回,四、微分方程的数值解,(一)常微分方程数值解的定义,在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题,一般是要求得到解在若干个点上满足规定精确度的近似值,或者得到一个满足精确度要求的便于计算的表达式。,因此,研究常微分方程的数值解法是十分必要的。,返 回,(二)建立数值解法的一些途径,1、用差商代替导数,若步长h较小,则有,故有公式:,此即欧拉法。,2、使用数值积分,对方程y=f(x,y), 两边由xi到xi+1积分,并利用梯形公式,有:,实际应用时,与欧拉公式结合使用:,此即

3、改进的欧拉法。,故有公式:,3、使用泰勒公式,以此方法为基础,有龙格-库塔(Runge Kutta)法、线性多步法等方法。,4、数值公式的精度,当一个数值公式的截断误差可表示为O(hk+1)时(k为正整数,h为步长),称它是一个k阶公式。,k越大,则数值公式的精度越高。,欧拉法是一阶公式,改进的欧拉法是二阶公式。 龙格-库塔法有二阶公式和四阶公式。 线性多步法有四阶阿达姆斯外插公式和内插公式。,返 回,(三)可以用Matlab软件求常微分方程的数值解,t,x=solver(f,ts,x0,options),ii.阻滞增长模型(Logistic模型、Verhulst模型),传染病模型,问题,描述

4、传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数 (病人) i(t),每个病人每天有效接触(足以使人致病)人数为,模型1,假设,若有效接触的是病人,则不能使病人数增加,建模,?,模型2,区分已感染者(病人)和未感染者(健康人),假设,1)总人数N不变,病人和健康 人的 比例分别为,2)每个病人每天有效接触人数为, 且使接触的健康人致病,建模, 日 接触率,SI 模型,模型2,tm传染病高潮到来时刻, (日接触率) tm,病人可以治愈!,?,t=tm, di/dt 最大,模型3,传染病无免疫性病

5、人治愈成为健康人,健康人可再次被感染,增加假设,SIS 模型,3)病人每天治愈的比例为, 日治愈率,建模, 日接触率,1/ 感染期, 一个感染期内每个病人的有效接触人数,称为接触数。,模型3,接触数 =1 阈值,感染期内有效接触感染的健康者人数不超过病人数,模型2(SI模型)可以看作模型3(SIS模型)的特例,模型4,传染病有免疫性病人治愈后即移出感染系统,称移出者,SIR模型,假设,1)总人数N不变,病人、健康人和移出者的比例分别为,2)病人的日接触率 , 日治愈率, 接触数 = / ,建模,需建立 的两个方程,模型4,SIR模型,模型4,SIR模型,相轨线 的定义域,在D内作相轨线 的图形

6、,进行分析,模型4,SIR模型,相轨线 及其分析,s(t)单调减相轨线的方向,P1: s01/ i(t)先升后降至0,P2: s01/ i(t)单调降至0,1/阈值,模型4,SIR模型,预防传染病蔓延的手段, (日接触率) 卫生水平,(日治愈率) 医疗水平,传染病不蔓延的条件s01/, 的估计,降低 s0,提高 r0,提高阈值 1/,五、 微分方程稳定性分析,用微分方程方法建立的动态模型问题 模型分析 中的一个重要问题是:当时间充分长后 ,动态过程的 变化趋势 是什么?,微分方程模型中 , 方程 ( 组 ) + 初始条件 解,初始条件的作用在于确定解, 它的微小变化会产生不同的 解,换言之,对

7、解的发展性态变化 , 往往具有影响作用 .,问题是这种对解的发展性态的影响作用是 长期存在 的 , 还是当时间充分大以后 , 影响作用会 “消逝 ” ?,(1)微分方程模型的稳定性及其实际意义,有时候 , 初始条件的微小变化会导致解的性态随时间变 大后 , 产生显著的差异 , 这时称 系统是不稳定 的 ;,有时候 , 初始条件变化导致解的性态差异会随时间变大后而消失 , 这时称该 系统是稳定 的.,在实际问题中, 初始状态不能精确地而只能近似地确定, 所以稳定性问题的研究对于用微分方程方法建立的模型具有十分重要的实际意义。,也就是说,在具有稳定性特征的微分方程模型中, 长远来看, 最终发展结果

8、与精确的初始状态究竟如何 , 两者之间没有多大关系, 初始状态刻画得精确不精确是无关紧要的。,微分方程稳定性理论 可以使我们在很多情况下不求解方程便可直接得到微分方程模型描绘的系统是 稳定 或 不稳定 的结论。,研究者对于微分方程稳定性理论的研究兴趣往往大于该方程解有无解析表达式的研究兴趣。,在数学建模竞赛活动中,很多问题中涉及到的微分方程是一类称为 自治系统 的方程 。,自治方程 是指方程中不显含自变量 t 的微分方程,例如,自治方程 中的解随时间不断变大如有稳定变化趋势,则这个解的 最终趋势值 只能是该方程的 平衡点 。,的 平衡点 是指代数方程,的根 (可能不止一个根) ;,的 平衡点

9、是 指代数方程组,的解 (可能不止一组解)。,如果存在某个邻域,使微分方程的解 x ( t ) 从这个邻域内的某个点 x ( 0 ) 出发, 满足 :,则称微分方程 的 平衡点 是 稳定 的;,如果存在某个邻域,使微分方程的解 x ( t ) , y ( t ) 从这个邻域内的某个点 x ( 0 ) , y ( 0 ) 出发, 满足 :,则称微分方程 的 平衡点 是 稳定 的。,上述 一阶自治方程 和 二阶自治方程组 解的 稳定性理论 结果可简介如下:,非线性方程 ( 一个方程 ) 情况,形式 : x( t ) = f ( x( t ) ),平衡点 : 解 f ( x ) = 0 , 得 x

10、= x0 . 注意: 有时该方程的根不止一个.,稳定意义 : 当 t 时, 如 x x0 , 则称 x0 是稳定的平衡点; 否则称 x0 是不稳定平衡点.,由此 , 当 f ( x0 ) 0 时, x x0 ; 当 f ( x0 ) 0 时, x +.,(c) 一阶非线性问题的稳定性结论 : 根据有关数学理论 , 一阶非线性问题的稳定性在非临界情况下,与一阶线性问题结论完全相同.,.,研究方法 : (a) 作 f ( x ) 的线性替代 ( 利用一元函数的泰勒展开式 ) : f ( x ) f ( x0 )( x - x0 ) + f ( x0 ) = f ( x0 )( x - x0 ) ;

11、,(b) 线性问题研究: 求解 x = f ( x0 )( x x0 ) , 解得,非线性方程 ( 两个方程 ) 组情况,平衡点: 解 f (x , y) = 0 , 得 x = x 0g ( x , y ) = 0 , y = y 0 .,y ( t ) = g ( x ( t ) , y ( t ) ),形式 : x ( t ) = f ( x ( t ) , y( t ) ) ,稳定意义 : 当 t + 时, 如 x x0 , y y0 , 则称 ( x0 , y0 ) 是稳定的平衡点 ; 否则称 ( x0 , y0 ) 是不稳定平衡点.,上面的方程组有时可能不止一组解.,研究方法 :

12、作 f ( x , y ) 与 g ( x , y ) 的线性替代(利用二元函数的泰勒展开式):,f ( x , y ) fx( x0 , y0 )( x - x0 ) + f y ( x0 , y0 )( y - y0 ) ;g ( x , y ) g x( x0 , y0 )( x - x0 ) + g y ( x0 , y0 )( y - y0 ).,(b) 线性问题研究: 记 a1= f x( x0, y0 ) , a2 = f y ( x0, y0 ) , b1 = g x ( x0, y0 ) , b2 = g y ( x0, y0 ) ,p = - ( a1 + b2 ) , q

13、 = a1 b2 - a2 b1 , 并无妨设 x0 = 0 , y0 = 0 ;,求解,其中 1 , 2 为特征方程 r 2 + p r + q = 0 的两根 .,这里 1 +2 = - p , 1 2 = q,或写为,(1) 当 p 0 , q 0 时,如果 p2 4q 0,由 1 +2 = - p , 1 2 = q , 推得 1 与 2 均为负数 ,,故当 t + 时,e 1 t 与 e 2 t 均趋于零 ,系统稳定 ;,如果 p2 4q 0,由 1 +2 = - p , k = i 中 为负数 ( k = 1 ,2 ) ,,故当 t + 时,ek t = et( sint cost

14、 )( k = 1 ,2 ) 也均趋于零 , 系统仍为稳定的 ;,(2) 当 p 0 时,如果 p2 4q 0 ,由 1 +2 = - p , 可推出1 与 2 中至少有一个为正数,,故当 t + 时,e1 t 与 e2 t 中至少有一个趋于 + ,系统不稳定 ;,如果 p2 4q 0,仍由 1 +2 = - p , 可推出k = i ( k = 1 ,2 ) 中 为正数 ,,故当 t + 时, ek t = et( sint cost ) ( k = 1 ,2 ) 趋于 + ,仍可推出 系统不稳定 。,(3) 当 q 0 时 , 此时必定有 p2 4q 0 ,,此时 系统也必不稳定 。,由 1 2 = q , 可推出 1 与 2 中至少有一个为正数,,故当 t + 时,e1 t 与 e2 t 中至少有一个趋于 + ,,当 p 0 , q 0 时 , 相应的平衡点是稳定的;,当 p 0 或当 q 0 时 , 相应的平衡点是不稳定的。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号