soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件

上传人:bin****86 文档编号:55012170 上传时间:2018-09-23 格式:PPT 页数:36 大小:1.65MB
返回 下载 相关 举报
soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件_第1页
第1页 / 共36页
soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件_第2页
第2页 / 共36页
soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件_第3页
第3页 / 共36页
soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件_第4页
第4页 / 共36页
soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件_第5页
第5页 / 共36页
点击查看更多>>
资源描述

《soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件》由会员分享,可在线阅读,更多相关《soho mission halo orbit recovery from the attitude soho任务的晕轨道恢复从态度课件(36页珍藏版)》请在金锄头文库上搜索。

1、The SOHO Mission Halo Orbit Recovery from the Attitude Control Anomalies of 1998 Craig E. Roberts Computer Sciences Corporation Flight Dynamics Facility Goddard Space Flight Center,Libration Point Orbits and Applications 10 - 14 June 2002 Parador dAiguablava Girona, Spain,Contents,Introduction to SO

2、HO and its Halo Orbit SOHO Stationkeeping Technique June 1998 Anomaly and Recovery December 1998 Anomaly and Recovery Conclusion,Solar Heliospheric Observatory (SOHO) Spacecraft,SOHO Mission Overview,Launched 3 December 1995; Sun-Earth/Moon L1 Halo Orbit Insertion (HOI) March 1996 Joint ESA/NASA mis

3、sion; second NASA mission dedicated to Sun-Earth L1 halo orbit Purpose: Sun and solar wind science 3-axis stabilized; closed loop attitude system with momentum wheels, gyros (formerly), Sun sensors, FHSTs Steering laws keep S/C X-axis and instrument boresights Sun-pointing; Z-axis nods to stay align

4、ed with Suns spin axis over course of year Hydrazine blowdown propulsion for translational control, momentum management and backup attitude control Two fully redundant strings of 8 4.5 N thrusters per string,SOHOs Halo: View from NEP,SOHOs Class 2 Halo: Side View,SOHOs Halo: Looking Sunward from Ear

5、th,SOHO Halo Orbit Stationkeeping Technique,Single-axis control Thrust vectors aligned with S/C body X-axis (X-axis always Sun-pointed) Thrust/V then parallel or anti-parallel to S/C-Sun line Upshot: V basically along Earth-Sun line (GSE X-axis) Trajectory propagated to a candidate SK epoch; V appli

6、ed and differentially corrected as trajectory propagated toward a target goal (RLP VX = 0) in subsequent RLP XZ-plane crossing; repeated until two halo revolutions are achieved V toward the Sun increases orbital energy, preventing halo decay back toward Earth V away from Sun decreases orbital energy

7、, preventing escape into free heliocentric orbit,Stationkeeping Realities,LPO correction costs increase exponentially from epoch of last impulse; doubling constant 16 days Burn performance deviations (errors) dominate orbit knowledge errors; so, are biggest contribution to the magnitude of the next

8、SK burn For SOHO, we prefer to burn well before correction cost has grown to 1.0 m/sec SOHO SK technique nominal performance: 3 to 4 burns per year; 90 to 120 days apart; 2 to 3 m/sec/year However, SOHO attitude control realities intrude:- Momentum dumps needed at intervals (3 to 4 per year); dump r

9、esidual Vs can be 2 to 8 cm/sec along Sun line- SK schedule tied to momentum dump schedule so that the dumps residual Vs can be offset,Stationkeeping Realities, Part 2: ESRs,Worse than momentum dumps, frequent ( 3 to 4 per year) onboard attitude anomalies called Emergency Sun Re-acquisitions (ESRs)

10、occur randomly and require thrusters V impact can be of order 1.0 m/sec before attitude stabilization restored (thrusters off/ wheels back on) Vs from ESR events must be countered by special orbit recovery burns as soon as possibleusually within a day or twoafter the ESR Vs to recover from typical E

11、SRs comparable in magnitude to normal SKs, i.e., 1.0 m/sec Recovery burn Vs opposite in direction to ESR Vs Although identical in maneuver technique, we distinguish between normal SK and post-ESR orbit recovery burns,Post-ESR Recovery,Meaningful post-ESR trajectory re-targeting requires that the ESR

12、 V first be modeled into the trajectory (cant wait for OD) Unfortunately, in SOHO ESR mode, the telemetry lacks usual burn-related parameters like thruster counts; so ESRs cannot be reconstructed from propulsion data alone Fortunately, both the ESR timeframe and net V can be measured directly from D

13、SN Doppler tracking data (actual ESR burn Doppler compared to no-burn predicted Doppler) ESR V then modeled into the trajectory as a finite burn event using trajectory design software (Swingby); model is adjusted until output radial delta-V matches Doppler Trajectory then propagated up to a candidat

14、e recovery burn epoch, and halo is re-targeted from that point,The June 25, 1998 Disaster,Problematic response to an ESR event by spacecraft controllers led to the spacecraft rolling off into a tumble, with a resulting loss of communications and power Out of contact for several weeks, many were fear

15、ing the mission lost.though there were reasons for hope Attitude simulations suggested that SOHO likely settled into a slow spin about its major axis of momentum, but with the solar panels roughly edge on to the Sun (depriving SOHO of power) Predicted that attitude geometry would be such that by mid

16、-summer the panels would begin getting some Sun Radar skin contact was made via Arecibo/Goldstone test on July 23, verifying predictions of position in halo DSN successfully made brief radio contact on August 3,Disasters Impact on Trajectory,Doppler data covering the ESR prior to tumble was availabl

17、e; but once tumble began station lock was lost, depriving us of tracking and telemetry Though there was intermittent dropout prior to complete loss of contact, Doppler indicated that a total of only several cm/sec was imparted prior to the tumble, but resulting in a net delta-V of just 1.4 cm/sec Su

18、nward Doppler and some later analysis suggested a tail-off of the thrusting and a possible thruster shutdown not long after tumble began (but this was highly uncertain) So, the best guesstimate was that a mere 1.4 cm/sec (net Sunward) was imparted to the orbit; this was modeled into the reconstructed “best estimated trajectory”, which was used to support subsequent search operations,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > 其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号