太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计

上传人:jct2****808 文档编号:54533961 上传时间:2018-09-14 格式:DOC 页数:44 大小:1.03MB
返回 下载 相关 举报
太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计_第1页
第1页 / 共44页
太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计_第2页
第2页 / 共44页
太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计_第3页
第3页 / 共44页
太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计_第4页
第4页 / 共44页
太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计_第5页
第5页 / 共44页
点击查看更多>>
资源描述

《太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计》由会员分享,可在线阅读,更多相关《太阳能电池板自动跟踪系统设计-电气工程及其自动化毕业设计(44页珍藏版)》请在金锄头文库上搜索。

1、第 1 章 绪 论1第 1 章 绪 论1.1 太阳能利用的前景当今,煤,石油,天然气等常规矿产能源,储量越来越少,世界各大经济体都面临能源危机。按照目前的开采和使用速度,己探明的矿产能源仅够人类再利用几十年,可以说,己经是处在日益枯竭的形势之下。为了能够获得更多的资源,在石油储量丰富的地区,一直以来冲突不断,而且有外部势力的干预。为了得到能源,保证经济这架大车的正常运转,不惜以战争为手段,以人民的生命为代价。中国,作为世界上最大的发展中国家,对石油的依赖程度很高。以 2010 年为例:海关总署公布的数据显示,2010 年全年我国进口原油 2.39 亿吨,去年全年原油产量 2 亿吨,对外依存度逼

2、近 55%。我国已经进入能源预警阶段。根据国家能源局的报告,到 2010 年中国已成为世界第一大能源消费国。其中,电力消费从 2005年的 2.5 亿千瓦时增加到 2010 年的 4.2 亿千瓦时,年均增长 11.1%;煤炭消费量从2005 年的 23.18 亿吨增加到 2010 年的 32 亿吨,年均增长 6.8%;石油消费从 3.25 亿吨增加到 4.28 亿吨,年均增长 5.7%;天然气消费从 468 亿立方米增加到 1090 亿立方米,年均增长 18.5%;非石化能源消费从 1.6 亿吨标准煤增加到 2.6 亿吨标准煤,年均增长10.1%。“十二五”期间我困能源消费总量将增加 8 亿至

3、 1 亿吨标准煤,年均增长 4.8%至 5.5%,到 2015 年能源消费总量达 41 亿至 42.5 亿吨标准煤。从以上的数据,很容易看出,完全依靠煤炭!石油等常规能源,是无法满足未来社会经济发展对于能源需求的1。另外一个方面,矿产能源在使用中产生的二氧化碳会造成温室效应;其它的废渣废气对环境造成了无法挽回的损失。即使是这些能源本身泄漏都会对环境造成危害,如石油管道损坏造成的石油泄漏。基于以上两个方而的原因,人类正在寻找更适合的能源。希望能够逐步取代常规的矿产能源。在填补现有能源不足的同时,也为保护环境做积极的改善。目前所开发和利用的新能源主要有核能、风能、太阳能、潮汐能等。其中,风能、太阳

4、能、潮汐能都是利用自然界原本的能力,主要是一个转换利用的过程。而核能的利用则是一把双刃剑,在高效的同时,人类也为它的使用付出了沉重的代价,切尔诺贝利核电站爆炸,日本福岛电站泄漏,这些情景都依然清晰。太阳能电池板自动跟踪系统的设计2太阳能是分布最广,也是最容易获取的“清洁”能源。人类很早就开始利用太阳能。随着温室气体排放以及能源枯竭等问题越来越严重,世界上越来越多的国家和地区开始重视太阳能的开发利用。相比其他新能源而言,太阳能具有安全、使用方便、范围广等特点2。其储量巨大,可以广泛地利用。每年到达地球的太阳能可达1.73Kw,其中到达地球表面的约为 8.1Kw。人类可以转化和利用的部分约为 1.

5、7Kw。按照目前人类消耗能量的速度,每年的获取量都可以供人类使用几千年。对于人类而言,太阳就是一个取之不尽,用之不竭的能源基地,只要太阳东升西落不变,人类就可以一直获得充足的能源。即或是只利用照射到陆地部分的太阳能,也足够人类的使用了。随着技术的发展,突破技术瓶颈后,太阳能转换效率上提高,能够将大部分能量转换,再增大开发利用的规模,就可以更加广泛的利用太阳能了。太阳能的利用方式有很多种,目前太阳能的利用形式主要有光热利用,光伏发电转换利用和光能化学转换利用三种形式。太阳能光伏发电作为太阳能利用的主要方式,发展应用前景非常广阔。太阳能的总能量非常大,但是平均密度不高,需要很大的面积才能获得较大的

6、能量。太阳能利用的核心问题就在于两个方面:一是光伏电池的转换效率问题,即在接收太阳能时能将太阳能转换为电能的比例;二是太阳能板如何对准太阳,因为太阳与地球平面是相对运动的,且是在两个方向上运动,如何高效的跟踪上太阳就成为了一个问题。目前,在太阳能开发利用领域中,如何提高太阳能辐射的接收效率,依然是国内外相关领域的研究热点。而提高接收效率的重要途径之一就是进行太阳的自动跟踪。当然,此方法是在光伏电池转换效率一定的基础上做的改善工作。太阳能自动跟踪系统就是利用太阳与地球相对运动的规律来进行定位跟踪的系统。太阳的视位置,在天空中的运动是可以测算的,每天东升西落,具体时刻对应的太阳的位置,是可以提前计

7、算得到的。系统根据这种已知的位置,即可以通过调整系统自身的位置,使太阳能接收板始终对准太阳。太阳入射光线垂直地照射到太阳能电池接收板上时,太阳能的接收效率最高,所获得的能量也就最高。再将辐射能通过光伏设备转化为电能,集中起来方便人们的使用。1.2 太阳能跟踪控制器的发展状况第 1 章 绪 论3当前,各种类型的太阳能跟踪控制系统,可以分为两类:机械跟踪系统和电控跟踪系统。机械跟踪系统一般为压差式。电控跟踪系统可分为光电传感式跟踪控制系统和视日运动轨迹跟踪系统3。下面分别对这些系统作简要的介绍4:(1)压差式跟踪系统的基本工作原理是:跟踪系统没有对准太阳,即太阳能光线没有垂直照射到系统时,系统内部

8、密闭容器两侧受光而积不同,介质会因光照的不同发生相应的物理变化,产生不同的压力,从而在两侧形成压力差。在这种压力差的作用下,使跟踪控制系统做相应方向的运动,重新调整,直到两侧的压力相同。此时,容器两侧受光相同,系统对准到太阳。根据密闭容器里存储的介质,可以将压差式太阳能跟踪系统分为液压差式、气压差式、重力差式等。这类跟踪控制系统机构结构简单,造价较低,不用电子控制部分和外部电源,为纯机械控制系统。但该系统有局限性,一般只能用于单轴跟踪系统,跟踪精度很低。因此,此系统仅适用于一般用户的低需求时采用。(2)光电传感式太阳能跟踪控制光电传感式太阳跟踪控制系统采用光敏硅光电管、硅光电池等元件。目前国内

9、较常用的光电跟踪系统有电动式、重力式、电磁式。这些光电跟踪控制系统都采用光敏元件作为传感器。在这类跟踪控制系统中,传感器一般安装在采光板上或固定的位置,通过电机的转动来调整采光板的位置使采光板正对太阳。当太阳向西移动时,采光板的跟着偏移,光电传感器因受到阳光照射会输出一定值的电压或电流,作为输入信号,经放大电路放大,由电机转动调整太阳能采光板的角度使跟踪系统对准太阳。光电传感器式跟踪具有灵敏度高,反应快等优点,机械结构设计相对简单,但容易受天气的影响,若出现阴天或云遮住太阳的情况,太阳光线经过散射,就会导致跟踪控制系统无法对准太阳实际的位置,甚至引起执行机构的误动作,使跟踪失败。(3)视日运动

10、轨迹跟踪控制视日运动轨迹跟踪控制系统按系统的轴数,分为单轴跟踪和双轴跟踪两种:单轴跟踪方式一般分为三种方式:倾斜布置东西跟踪;焦线南北水平布置,东西跟踪;焦线东西水平布置,南北跟踪。以上三种跟踪方式都是单轴转动的南北向跟踪或东西向跟踪,工作原理相同。跟踪系统的转轴(或焦线)东西向布置,由预先计算好太阳能电池板自动跟踪系统的设计4的太阳赤纬角的变化,即跟踪角度,使太阳能采集板绕转轴作俯仰转动。采用此种跟踪方式,一天之中只有正午时刻太阳光与柱形抛物面的母线相垂直,此时热流最大;而在早上或下午太阳光线都是斜射。单轴跟踪的优点是结构比较简单,由于入射光线不能始终与太阳能接收板垂直,太阳能的利用率相对较

11、低。综上,在以上各种跟踪控制系统中,纯机械式的跟踪控制器精度较低,但是跟踪太阳的目的在于提高太阳能的利用率,如果精度低,跟踪利用率就比较低,要提高利用率就要在添加其它设备,额外提高了成本。光电传感式太阳跟踪控制系统的精度较高,但如上所述还存在不少问题。如果要提高太阳能的利用效率,需要进一步的研究和探讨,开发出真正高精、实用、廉价的太阳能自动跟踪器, 本文将对此做进一步研究。1.3 研究的目的和意义综上可知,太阳能作为一种新型的绿色能源,有着广泛的发展前景。但是由于太阳能本身的缺点,现在对太阳能的利用率普遍较低,并且现有跟踪控制器也有着各种缺点。为了尽可能的提高太阳光能的利用效率,改进现有太阳能

12、跟踪控制的缺点,本文设计的一种高精度太阳能跟控制系统。这种跟踪控制系统采用软件控制和传感器控制相结合的方法,设计合理的机械结构,通过硬件控制系统,来实现高精度的太阳跟踪。第 2 章 太阳跟踪装置的设计及方案5第 2 章 太阳跟踪装置的设计及方案为了提高太阳能的利用率,本文提出了一种基于单片机的固定轨迹粗略跟踪与光电传感器精确跟踪的双模式太阳能跟踪控制器。其中,固定轨迹跟踪方式是使跟踪装置的控制器根据相关的公式和参数计算出白天太阳的位置(视日运动),再转化成相应的脉冲发送给驱动器,驱动电机实时跟踪太阳。光电传感器精确跟踪控制是由 5 个普通的光敏二极管来实现,精确地跟踪太阳光信号的最强点,使太阳

13、光垂直照射电池板,提高太阳光能的利用率。2. .1 太阳跟踪器工作原理太阳的光照强度是随着天气变化而实时变化的,当光照强度较好时,光电传感器对光线比较敏感,此时选用自动追踪模式(即光电跟踪);当天气不好、光照强度比较弱时,漫反射的加重对光电传感器产生很大的干扰,这种情况下选用固定跟踪模式。图 2.1 所示为系统硬件结构,本系统采用双轴跟踪,利用高度角方位角式跟踪,采集来的信号通过特定的电路进行处理后,输入单片机内,经过单片机内部程序的处理得到太阳位置偏差角度,进而驱动电机实现对太阳的精确跟踪。图 2.1 太阳能跟踪系统基本框图2.2 太阳能跟踪器各模块设计2.2.1 固定轨迹跟踪模块虽然太阳位

14、置是实时变化的,但是它的运行规律还是可循的。软件算法主要根据太阳的运行规律计算其实时方位角和高度角,以及太阳能跟踪控制器的水平角和仰角。传感器单片机驱动1驱动2电机A(高度角)电机B(方位角)太阳能电池板自动跟踪系统的设计6利用时钟芯片和单片机控制单元按照太阳运行遵循的公式计算得到太阳的实时位置,通过指令使电机驱动太阳跟踪装置,实现太阳实时跟踪5。(1)Cooper方程太阳光线与地球赤道面的交角就是太阳的赤纬角,以占表示。在一年中,太阳赤纬每天都在变化,但不超过士2327的范围。夏天最大变化到夏至日的+2327;冬季最小变化到冬至日的-2327。太阳赤纬随季节变化,按照Cooper方程,(2-

15、1)式中,n为一年中的天数,如:在春分,n=81,则=0,自春分日起的第d天的太阳赤纬为: (2-2)(2)太阳角的计算如图2.2所示,指向太阳的向量与天顶Z的夹角定义为天顶角,用表示;向量与地平面的夹角定义为太阳高度角,用h表示;图2.2 太阳角的定义第 2 章 太阳跟踪装置的设计及方案7在地面上的投影线与南北方向线之间的夹角为太阳方位角,用表示。太阳的时角用表示,它定义为:在正午时=0,每隔一个小时增加15,上午为正,下午为负。1)太阳高度角计算太阳高度角的表达式为(2-3)式中,为地理纬度;为太阳赤纬;为太阳时角。正午时 ,(2-3)式可以简化为:因为,所以(2-4)正午时,若太阳在天顶

16、以南,即,取从而有(2-5)在南北回归线内,有时正午时太阳正对天顶,则有,从而h=90。2)太阳方位角太阳方位角按下式计算,(2-6)也可用下式计算,(2-7)根据地里纬度,太阳赤纬以及观测时间,利用式(2-6)或者式(2-7)中的任意一个可以求出任何地区,任何季节某一时刻的太阳方位角。3)日照时间太阳在地平线的出没瞬间,其太阳高度角h=0。若不考虑地表曲率及大气折射的影响,可得出日出日没时角表达式(2-8)式中-日出或日没时角,以度表示,正为日没时角;负为日出时角。对于北半球,当,解式(2-8),有太阳能电池板自动跟踪系统的设计8(2-9)求出时角后,日出日没时间用求出。一天中可能的日照时间由下式给出(2-10)利用太阳高度角和方位角的数学模型,就可以在固定纬度,固定时段计算出太阳在此条件下的方位。从而可以通过控制使光伏系统朝向太阳位置对其进行有效跟踪,提高系统的发电效率。2.2.2 光电传感器跟踪模块光电自动跟踪模式是使用光电传感器作为探测元件,实时探测太阳位置并将信号送达核心处理芯片进行处理以完成对太阳位置的探测和跟踪。本文以 5

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号