氨基酸发酵工艺学天津科技大学huif

上传人:飞*** 文档编号:54421275 上传时间:2018-09-12 格式:PPT 页数:175 大小:3.08MB
返回 下载 相关 举报
氨基酸发酵工艺学天津科技大学huif_第1页
第1页 / 共175页
氨基酸发酵工艺学天津科技大学huif_第2页
第2页 / 共175页
氨基酸发酵工艺学天津科技大学huif_第3页
第3页 / 共175页
氨基酸发酵工艺学天津科技大学huif_第4页
第4页 / 共175页
氨基酸发酵工艺学天津科技大学huif_第5页
第5页 / 共175页
点击查看更多>>
资源描述

《氨基酸发酵工艺学天津科技大学huif》由会员分享,可在线阅读,更多相关《氨基酸发酵工艺学天津科技大学huif(175页珍藏版)》请在金锄头文库上搜索。

1、第三章 氨基酸发酵工艺学,学习氨基酸发酵工艺学的目的、研究对象、任务及内容,氨基酸发酵是典型的代谢控制发酵,由发酵所生成的产物氨基酸,都是微生物的中间代谢产物,它的积累是建立于对微生物正常代谢的抑制。在脱氧核糖核酸(DNA)的分子水平上改变、控制微生物的代谢,使有用产物大量生成、积累。以探讨氨基酸发酵工厂的生产技术为主要目的。氨基酸发酵生产以发酵为主,发酵的好坏是整个生产的关键,但后处理提纯操作和提纯设备选用当否,也会大大影响总的得率。氨基酸发酵工艺学研究的对象应该包括从投入原料到最终产品获得的整个过程,其中有微生物生化问题、生化工程问题,也有分析与设备问题。今后的发展是采用诱变、细胞工程、基

2、因工程的手段选育出从遗传角度解除了反馈调节和遗传性稳定的更理想菌种,提高产酸;采用过程控制,进行最优化控制,连续化、自动化,稳产、高产;探求新工艺、新设备,以提高产率和收得率;研究发酵机制等问题,以便能更好地控制氨基酸这样微生物中间代谢产物的发酵。,绪 论,第一节、氨基酸概论,1、氨基酸简介 氨基酸是构成蛋白成分 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。 目前世界上可用发酵法生产氨基酸有20多种。,2、氨基酸的用途,(1)食品工业:强化食品:赖氨酸,苏氨酸,色氨酸于小麦中增鲜剂:谷氨酸单钠和天冬氨酸苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(-天冬酰苯丙氨

3、酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。,(2)饲料工业:甲硫氨酸等必需氨基酸可用于制造动物饲料 ,添加蛋氨酸、赖氨酸、精氨酸等必须氨基酸可促进动物生长发育、改善肉质、节省蛋白饲料、降低成本等。 (3 )医药工业:多种复合氨基酸制剂可通过输液治疗营养或代谢失调 氨基酸注射液由1985年的100万瓶增长到2003的1.5万瓶,每年以15-20%的速度递增,全行业的年产值预计能达到10亿元 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 (4)化学工业: 谷氨基钠作洗涤剂,丙氨酸制造丙氨酸纤维(合成高分子化合物)。能保持皮肤湿润的润肤剂焦谷氨酸钠和

4、质量接近天然皮革的聚谷氨酸人造革,以及人造纤维和涂料。,表3-8 世界氨基酸主要生产厂家生产能力,3、氨基酸的生产方法,发酵法:直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。 添加前体发酵法:如用邻氨基苯甲酸,生产L-色氨酸;甘氨酸生产L-丝氨酸。 酶法:利用微生物细胞或微生物产生的酶来制造氨基酸。延胡索酸和铵盐为原料,经天冬氨酸酶催化生产L-天冬氨酸。 提取法:常用毛发、血粉等蛋白质原料水解,从水解液中提取。胱氨酸、半胱氨酸和酪氨酸 合成法:合成法获得DL-蛋氨酸、不对称合成法获得L-氨基酸

5、。丙氨酸、甘氨酸、苯丙氨酸。传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。,生产氨基酸的大国为日本和德国。 日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能生产高品质的氨基酸,可直接用于输液制剂的生产。 日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。 国内生产氨基酸的厂家主要是天津氨基酸公司,湖北八峰氨基酸公司,但目前无论生产规模及产品质量还难于与国外抗衡。 在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术和仿造产品,1991年销售量为二千万瓶,1996年达六千万瓶,主

6、要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原料都依赖进口。 2000年后,世界氨基酸产值已达45亿美元,占生物技术市场的7%,国内的氨基酸产值可达40亿元,占全国发酵产业总产值的12%。,第二节、氨基酸发酵菌株的育种,是氨基酸代谢控制发酵的基本策略之一,发酵工程要求微生物大量地合成特定的代谢产物,这一目的只有当微生物的部分代谢调控机制遭到破坏时才能达到。用人工诱变的方法有目的地改变微生物固有的调节机制,使合成产物的途径畅通无阻,最大限度地积累特定产物,这种发酵称为代谢控制发酵。,从自然界中筛选有产酸能力的菌株,并建立其培养条件. 在确立突变技术和阐明氨基酸生物合成系统调节机制的基础上

7、发展为营养缺陷变异株、抗药性菌株的育种。 随着重组DNA技术的发展,接合、转导、转染、细胞融合等手段首先用于体内基因重组,是早期用基因重组方法构建生产菌株的尝试。 随着载体、受体系统的构建及体外基因重组技术的日益完善,氨基酸生物工程菌的构建有了长足的发展。 苏氨酸等的生产菌株被成功地构建并应用于工业化生产。,1、 用野生株的方法,这是从自然界获得的分离菌株进行发酵生产的一种方法。 典型的例子就是谷氨酸发酵。 改变培养条件的发酵转换法中,有变化铵离子浓度、磷酸浓度。使谷氨酸转向谷氨酰胺和缬氨酸发酵,2. 用营养缺陷变异株的方法,这一方法是诱变出菌体内氨基酸生物合成某步反应阻遏的营养缺陷型变异体,

8、使生物合成在中途停止,不让最终产物起控制作用。 这种方法中有用高丝氨酸缺陷株的赖氨酸发酵,有用谷氨酸缺陷株的鸟氨酸发酵,还有用异亮氨酸缺陷株的脯氨酸发酵。,谷氨酸棒状杆菌的苏氨酸、异亮氨酸、甲硫氨酸和赖氨酸的合成是与分枝途径相联系的(图4-8),筛选高丝氨酸营养缺陷型后,限量供给苏氨酸时,就能解除由苏氨酸和赖氨酸的协同反馈抑制作用,而获得赖氨酸的过量生产。这是因为仅有赖氨酸或苏氨酸存在时,天冬氨酸激酶不被抑制,只有两者的协同效应才能造成抑制。在限量供给苏氨酸的情况下,即使赖氨酸过剩,抑制作用也很难发生。,3. 类似物抗性变异株的方法,用一种与自己想获得的氨基酸结构相类似的化合物加入培养基内,使

9、其发生控制作用,从而抑制微生物的生长。这样,就可以得到在这种培养基中能够生长的变异株,而这种变异株正是解除了调控机制的,能够生成过量的氨基酸。 利用此方法发酵的有:苏氨酸、赖氨酸、异亮氨酸、组氨酸和精氨酸。,高丝氨酸脱氢酶,例如,在黄色短杆菌的赖氨酸、苏氨酸和异亮氨酸生物合成中(图5-16所示),选育抗苏氨酸结构类似物2-氨基-3-羟基戊酸(AHVr)突变株,得到了具有反馈抑制抗性,高丝氨酸脱氢酶活性提高1300倍,能积累14g/L苏氨酸的突变株。,4. 体内及体外基因重组的方法,基因工程包括细胞内基因重组方法和试管内的体外基因重组方法。 体内基因重组在应用上又称为杂交育种,主要方法包括:转化

10、、转染、接合转移、转导和细胞融合等,这都是在细胞内暂时地产生染色体的局部二倍体,在两条DNA链之间引起两次以上的交叉,是遗传性重组现象。 细胞内基因重组技术的缺点是,现在只在同种或有近缘关系的微生物之间进行并较难成功。,代谢工程 在阐明代谢途径及其调控规律的基础上,应用重组DNA技术可以改变代谢途径分支点上的流量或引入新的代谢步骤与构建新的代谢网络。 其主要步骤为: 鉴定目标代谢途径涉及的酶(特别是限速酶); 取得酶基因,必要时可用蛋白质工程技术,如定点诱变,基因剪接等,使蛋白具有新的特点(增强活性或稳定性、解除反馈抑制等); 将一种或多种异源的或改造后的酶基因与调节元件一起克隆进目标生物;

11、使调节元件的作用及培育条件最优化。,5、基因工程菌,通过基因工程技术,构建理想的工程菌株,5.1 载体-受体系统及克隆表达的研究,5.1.1 受体的获得 目前使用的氨基酸工程菌受体主要是大肠杆菌K-12及棒状杆菌家族,通常是通过诱变选育出的基础产率较高的菌株。 大肠杆菌遗传背景研究得清楚,载体系统完善,利于工程菌的构建,但它含有内毒素且不能将蛋白产物分泌至胞外,为应用带来困难。 棒状杆菌能克服这两个缺点,但载体受体系统研究较晚且有限制修饰系统的障碍,所以获得利于外源基因导入及表达且能稳定遗传的受体菌是尚待解决的问题。,5.1.2 载体的构建,有效的载体需要有在受体菌中可启动的复制起始位点,这可

12、从棒状杆菌家族内源小质粒中获得; 载体所需的筛选标记及外源基因插入的多克隆位点,可从常用的克隆载体中获得。,5.1.3 基因转移手段,通常采用的方法有:原生质体转化、转导,电转化,接合转移。 原生质体转化的方法是较早采用的方法,由于受到原生质体再生条件的局限,效率不高; 电转化方法由于高效,快速被广泛使用,目前它的转化效率可达到原生质体转化法的100-1000倍。 接合转移可用于基因在亲缘关系远的物种之间的转移,并且可将外源基因整合于染色体上,易于稳定遗传。,第三节 氨基酸发酵的代谢控制,控制发酵的条件 控制细胞渗透性 控制旁路代谢 降低反馈作用物的浓度 消除终产物的反馈抑制与阻遏作用 促进A

13、TP的积累,以利氨基酸的生物合成,一、菌种的代谢调控,是氨基酸代谢控制发酵的基本策略之二,控制发酵环境条件,专性需氧菌,控制环境条件可改变代谢途径和产物。,控制细胞渗透性,生物素、油酸和表面活性剂,引起细胞膜的脂肪酸成分的改变。 细胞内生物素水平高,Glu不能通过细胞膜 青霉素:抑制细胞壁的合成,由于细胞面内外的渗透压而泄露出来。 表面活性剂增加细胞膜通透性,氨基酸发酵必须考虑的重要因素,控制旁路代谢,降低反馈作用物的浓度,利用营养缺陷型突变株进行氨基酸发酵必须限制所要求的氨基酸的量。,限制瓜氨酸的浓度可解除反馈抑制,实现鸟氨酸的生物合成。,消除终产物的反馈抑制与阻遏作用,使用抗氨基酸结构类似

14、物突变株的方法或者通过选育营养缺陷型菌株。,促进ATP的积累,以利氨基酸的生物合成,ATP的积累可促进氨基酸的生物合成,二、氨基酸发酵的工艺调控,培养基 pH 温度 氧,是氨基酸代谢控制发酵的基本策略之三,(一)培养基,1、碳源:淀粉水解糖、糖蜜、醋酸、乙醇、烷烃碳源浓度过高时,对菌体生长不利,氨基酸的转化率降低。菌种性质、生产氨基酸种类和所采用的发酵操作决定碳源种类 2、氮源:铵盐、尿素、氨水; 同时调整pH值。 营养缺陷型添加适量氨基酸主要以添加有机氮源水解液。 需生物素的氨基酸,以玉米浆作氮源。 尿素灭菌时形成磷酸铵镁盐,须单独灭菌。可分批流加。 氨水用pH自动控制连续流加 3、合适C/

15、N 氮源用于调整pH。 合成菌体 生成氨基酸,因此比一般微生物发酵的C/N高。,有机氮源缓慢利用,包括蛋白胨、牛肉膏、花生饼粉、黄豆饼粉、玉米浆、酵母粉、麸皮水解液、尿素 玉米浆是一种用亚硫酸浸泡玉米而得的浸泡水浓缩物,含丰富的氨基酸、核酸、维生素、无机盐等,,黄豆饼粉:水分11%,总氮11.2%,类脂物0.6%,总糖30%,灰分6.5% 麸皮水解液:可以代替玉米浆,蛋白质、氮基酸等营养成分比玉米浆少 尿素:菌体必须含脲酶方可使用 氨水是一种无机氮源,目前常在生产中使用高浓度液氨,注意:因分解容易带来pH波动的,4、磷酸盐:对发酵有显著影响。不足时糖代谢受抑制。 5、镁:是已糖磷酸化酶、柠檬酸

16、脱氢酶和羧化酶的激活剂,并促进葡萄糖-6-磷酸脱氢酶活力。 6、钾:促进糖代谢。谷氨酸产酸期钾多利于产酸,钾少利于菌体生长。 7、钠:调节渗透压作用,一般在调节pH值时加入。 8、锰:是许多酶的激活剂。 9、铁:是细胞色素、细胞色素氧化酶和过氧化氢酶的活性基的组成分,可促进谷氨酸产生菌的生长。 10、铜离子:对氨基酸发酵有明显毒害作用。 11、生长因子:生物素作用:影响细胞膜透性和代谢途径。浓度:过多促进菌体生长,氨基酸产量低。过少菌体生长缓慢,发酵周期长。与其它培养条件的关系:氧供给不足,生物素过量时,发酵向其它途径转化。种类:玉米浆、麸皮水解液、甘蔗糖蜜和甜菜糖蜜为来源。,(二)、 pH对氨基酸发酵的影响及其控制,作用机理:主要影响酶的活性和菌的代谢。 控制pH方法:流加尿素和氨水 流加方式:根据菌体生长、pH变化、糖耗情况和发酵阶段等因素决定 控制: (1)菌体生长或耗糖慢时,少量多次流加尿素,避免pH过高 (2)菌体生长或耗糖过快时,流加尿素可多些,以抑制菌体生长。 (3)发酵后期,残糖少,接近放罐时,少加或不加尿素,以免造成氨基酸提取困难。 (4)氨水对pH影响大,应采取连续流加。,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号