传感器原理磁传感器

上传人:平*** 文档编号:54410079 上传时间:2018-09-12 格式:PPT 页数:66 大小:920.64KB
返回 下载 相关 举报
传感器原理磁传感器_第1页
第1页 / 共66页
传感器原理磁传感器_第2页
第2页 / 共66页
传感器原理磁传感器_第3页
第3页 / 共66页
传感器原理磁传感器_第4页
第4页 / 共66页
传感器原理磁传感器_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《传感器原理磁传感器》由会员分享,可在线阅读,更多相关《传感器原理磁传感器(66页珍藏版)》请在金锄头文库上搜索。

1、传感器技术 主讲:吴秋宁,第四章 磁传感器,根据电磁感应定律,在切割磁通的电路里,产生与磁通和变化速率成正比的感应电动势。因此最简单的把磁转换成电的磁传感器就是线圈,随着科学技术的发展,现代的磁传感器已向固体化发展,它是利用磁场作用使物质的电性能发生变化的各种物理效应制成的,从而使磁场强度转换为电信号。磁传感器的种类较多,制作的传感器的材料有半导体、磁性体、超导体等不同材料制作的磁传感器其工作原理和特性也不相同。本章根据最近磁传感器的发展,重点介绍基于霍尔效应的霍尔磁敏传感器。,一、霍耳磁敏传感器 (一)霍耳效应,通电的导体或半导体,在垂直于电流和磁场的方向上将产生电动势的现象。,+,I,+,

2、+,+,+,+,+,+,+,+,+,+,l,w,d,霍耳效应原理图,UH,(二)霍耳磁敏传感器工作原理,设霍耳片的长度为l,宽度为w,厚度为d。又设电子以均匀的速度v运动,则在垂直方向施加的磁感应强度B的作用下,它受到洛仑兹力q电子电量(1.6210-19C) v电于运动速度 同时,作用于电子的 电场力,当达到动态平衡时,霍耳电势UH与 I、B的乘积成正比,而与d成反比。于是可改写成:,电流密度 j=nqv,nN型半导体中的电子浓度,N型半导体,P型半导体,霍耳系数,由载流材料物理性质决定。 材料电阻率,pP型半导体中的空穴浓度, 载流子迁移率, =v/E,即单位电场强度作用下载流子的平均速度

3、。,金属材料,电子很高但很小,绝缘材料,很高但很小。因此霍尔系数很小,使输出霍尔电势很小,不宜做霍尔元件故为获得较强霍耳效应,霍耳片全部采用半导体材料制成。且多用型半导体材料霍尔元件越薄,灵敏度系数越大当载流材料和几何尺寸确定后,霍尔电势的大小正比于控制电流和磁感应强度,因此霍尔元件可用于测量磁场(电流恒定)和检测电流(磁场恒定)。,设 KH=RH / d,KH霍耳器件的乘积灵敏度。它与载流材料的物理性质和几何尺寸有关,表示在单位磁感应强度和单位控制电流时霍耳电势的大小。,若磁感应强度B的方向与霍耳器件的平面法线夹角为时,霍耳电势应为:,UH KH I B,UH KH I B cos,注意:当

4、控制电流的方向或磁场方向改变时,输出霍耳电势的方向也改变。但当磁场与电流同时改变方向时,霍耳电势并不改变方向。,霍耳器件片 a)实际结构(mm);(b)简化结构;(c)等效电路 外形尺寸:6.43.10.2;有效尺寸:5.42.70.2,(三)霍耳磁敏传感器(霍耳器件),d,s,l,(b),2.1,5.4,2.7,A,B,0.2,0.5,0.3,C,D,(a),w,电流极,霍耳电极,R4,(c),霍耳输出端的端子C、D相应地称为霍耳端或输出端。若霍耳端子间连接负载,称为霍耳负载电阻或霍耳负载。电流电极间的电阻,称为输入电阻,或者控制内阻。霍耳端子间的电阻,称为输出电阻或霍耳侧内部电阻。,器件电

5、流(控制电流或输入电流):流入到器件内的电流。,电流端子A、B相应地称为器件电流端、控制电流端或输入电流端。,关于霍耳器件符号,名称及型号,国内外尚无统一规定,为叙述方便起见,暂规定下列名称的符号。,控制电流I; 霍耳电势UH; 控制电压U; 输出电阻R2; 输入电阻R1; 霍耳负载电阻R3; 霍耳电流IH。,图中控制电流I由电源E供给,R为调节电阻,保证器件内所需控制电流I。霍耳输出端接负载R3,R3可是一般电阻或放大器的输入电阻、或表头内阻等。磁场B垂直通过霍耳器件,在磁场与控制电流作用下,由负载上获得电压。,实际使用时,器件输入信号可以是I或B,或者IB,而输出可以正比于I或B, 或者正

6、比于其乘积IB。,上两式是霍耳器件中的基本公式。即:输入电流或输入电压和霍耳输出电势完全呈线性关系。如果输入电流或电压中任一项固定时,磁感应强度和输出电势之间也完全呈线性关系。,同样,若给出控制电压U,由于U=R1I,可得控制电压和霍耳电势的关系式,设霍耳片厚度d均匀,电流I和霍耳电场的方向分别平行于长、短边界,则控制电流I和霍耳电势UH的关系式,(四)基本特性,1、直线性:指霍耳器件的输出电势UH分别和基本参数I、V、B之间呈线性关系。,UH=KHBI,2、灵敏度:可以用乘积灵敏度或磁场灵敏度以及电流灵敏度、电势灵敏度表示:,KH乘积灵敏度,表示霍耳电势VH与磁感应强度B和控制电流I乘积之间

7、的比值,通常以mV/(mA0.1T)。因为霍耳元件的输出电压要由两个输入量的乘积来确定,故称为乘积灵敏度。,KB磁场灵敏度,通常以额定电流为标准。磁场灵敏度等于霍耳元件通以额定电流时每单位磁感应强度对应的霍耳电势值。常用于磁场测量等情况。,KI电流灵敏度,电流灵敏度等于霍耳元件在单位磁感应强度下电流对应的霍耳电势值。,若控制电流值固定,则:,UHKBB,若磁场值固定,则:,UHKI I,3、额定电流: 霍耳元件的允许温升规定着一个最大控制电流。,4、最大输出功率 在霍耳电极间接入负载后,元件的功率输出与负载的大小有关,当霍耳电极间的内阻R2等于霍耳负载电阻R3时,霍耳输出功率为最大。,5、最大

8、效率 霍耳器件的输出与输入功率之比,称为效率,和最大输出对应的效率,称为最大效率,即:,6、负载特性 当霍耳电极间串接有负载时,因为流过霍耳电流,在其内阻上将产生压降,故实际霍耳电势比理论值小。由于霍耳电极间内阻和磁阻效应的影响,霍耳电势和磁感应强度之间便失去了线性关系。如图所示。,80,60,40,20,0,0.2,0.4,0.6,0.8,1.0,UH/mV,=,=7.0,=1.5,=3.0,B/T,理论值,实际值,UH,R3,I,霍耳电势的负载特性,=R3/R2,霍耳电势随负载电阻值而改变的情况,7、温度特性:指霍耳电势或灵敏度的温度特性,以及输入阻抗和输出阻抗的温度特性。它们可归结为霍耳

9、系数和电阻率(或电导率)与温度的关系。,霍耳材料的温度特征 (a)RH与温度的关系;(b)与温度的关系,RH/cm2/A-1,250,200,150,100,50,40,80,120,160,200,LnSb,LnAs,T/,0,2,4,6,/710-3cm,LnAs,200,150,100,50,LnSb,T/,0,双重影响:元件电阻,采用恒流供电;载流子迁移率,影响灵敏度。二者相反。,8、频率特性 磁场恒定,而通过传感器的电流是交变的。器件的频率特性很好,到10kHz时交流输出还与直流情况相同。因此,霍耳器件可用于微波范围,其输出不受频率影响。 磁场交变。霍耳输出不仅与频率有关,而且还与器

10、件的电导率、周围介质的磁导率及磁路参数(特别是气隙宽度)等有关。这是由于在交变磁场作用下,元件与导体一样会在其内部产生涡流的缘故。,总之,在交变磁场下,当频率为数十kHz时,可以不考虑频率对器件输出的影响,即使在数MHz时,如果能仔细设计气隙宽度,选用合适的元件和导磁材料,仍然可以保证器件有良好的频率特性的。,9、不等位电势,定义:当霍尔元件通以控制电流而不加外磁场时,它的霍尔输出端之间仍有空载电势存在,该电势就称为不等电势.,产生原因: 霍尔电极安装位置不对称或不在同一等电位面上; 半导体材料不均匀造成了电阻率不均匀或是几何尺寸不均匀; 激励电极接触不良造成激励电流不均匀分布等。,两电极不在

11、 同一等电位面上,等电位面歪斜,霍耳开关集成传感器是利用霍耳效应与集成电路技术结合而制成的一种磁敏传感器,它能感知一切与磁信息有关的物理量,并以开关信号形式输出。霍耳开关集成传感器具有使用寿命长、无触点磨损、无火花干扰、无转换抖动、工作频率高、温度特性好、能适应恶劣环境等优点。霍尔开关集成传感器是以硅为材料,利用硅平面工艺制造的。硅材料制作霍尔元件是不够理想的,但在霍尔开关集成传感器上,由于N型硅的外延层材料很薄,可以提高霍尔电压。如果应用硅平面工艺技术将差分放大器、施密特触发器及霍尔元件集成在一起,可以大大提高传感器的灵敏度。,(五)霍耳开关集成传感器,由稳压电路、霍耳元件、放大器、整形电路

12、、开路输出五部分组成。 稳压电路可使传感器在较宽的电源电压范围内工作;开路输出可使传感器方便地与各种逻辑电路接口。,1霍耳开关集成传感器的结构及工作原理,2霍耳开关集成传感器的工作特性曲线从工作特性曲线上可以看出,工作特性有一定的磁滞BH,这对开关动作的可靠性非常有利。 图中的BOP为工作点“开”的磁感应强度,BRP为释放点“关”的磁感应强度。,霍耳开关集成传感器的工作特性曲线,VOUT/V,12,ON,OFF,BRP,BOP,BH,B,霍耳开关集成传感器的技术参数:工作电压 、磁感应强度、输出截止电压、输出导通电流、工作温度、工作点。,0,该曲线反映了外加磁场与传感器输出电平的关系。当外加磁

13、感强度高于BOP时,输出电平由高变低,传感器处于开状态。当外加磁感强度低于BRP时,输出电平由低变高,传感器处于关状态。,表 霍尔开关集成传感器的技术参数,双稳态霍尔开关集成传感器工作特性曲线,3霍耳开关集成传感器的应用 (1)霍耳开关集成传感器的接口电路传感器输出半导体管V是发射极接地而集电极开路的电路结构。这样的电路结构可以很容易地与半导体管、晶闸管、一般的逻辑电路相耦合。,磁铁轴心接近式 在磁铁的轴心方向垂直于传感器并同传感器轴心重合的条件下,,随磁铁与传感器的间隔距离的增加,作用在传感器表面的磁感强度衰减很快。当磁铁向传感器接近到一定位置时,传感器开关接通,而磁铁移开到一定距离时开关关

14、断。应用时,如果磁铁已选定,则应按具体的应用场合,对作用距离作合适的选择。,(2)给传感器施加磁场的方式,磁铁侧向滑近式 要求磁铁平面与传感器平面的距离不变,而磁铁的轴线与传感器的平面垂直。磁铁以滑近移动的方式在传感器前方通过。,采用磁力集中器增加传感器的磁感应强度,在霍耳开关应用时,提高激励传感器的磁感应强度是一个重要方面。除选用磁感应强度大的磁铁或减少磁铁与传感器的间隔距离外,还可采用下列方法增强传感器的磁感应强度。,S,N,磁铁,磁力集中器,传感器,带有磁力集中器的移动激励方式示意图,磁感应强度B/T,0.10,0.08,0.06,0.04,0.02,0,2.5,5,7.5,10,磁铁与

15、中心线的距离L2/mm,B-L2曲线的对比图,(a)加磁力集中器的移动激励方式,激励磁场应用实例,(b)推拉式 两个磁铁的S极都面对传感器,这样可以得到如图所示的较为线性的特性。,推拉式L1-B关系曲线,距离L1/mm,B/T,0.05,-0.05,0,-10,-5,0,5,10,15,-15,注意:磁铁S极作用于传感器背面,会抵消传感器正面磁铁S极的激励作用。,(c)双磁铁滑近式 为激励传感器开关的接通,往往把磁铁的S极对着传感器正面,如果在传感器的背面也设置一磁铁,使它的N极对着传感器的背面,就会获得大得多的磁场。,(d)翼片遮挡式 翼片遮挡方法就是把铁片放到磁铁与传感器之间,使磁力线被分流、傍路,遮挡磁场对传感器激励。当磁铁和传感器之间无遮挡时,传感器被磁铁激励而导通;当翼片转动到磁铁和传感器之间时,传感器被关断。,霍耳开关集成传感器的应用领域:点火系统、保安系统、转速、里程测定、机械设备的限位开关、按钮开关、电流的测定与控制、位置及角度的检测等等,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 教学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号