陶瓷的强化与增韧

上传人:飞*** 文档编号:54162895 上传时间:2018-09-08 格式:PDF 页数:2 大小:6.85KB
返回 下载 相关 举报
陶瓷的强化与增韧_第1页
第1页 / 共2页
陶瓷的强化与增韧_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《陶瓷的强化与增韧》由会员分享,可在线阅读,更多相关《陶瓷的强化与增韧(2页珍藏版)》请在金锄头文库上搜索。

1、陶瓷材料的强化影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能)和裂纹尺寸。其中 E是非结构敏感的,与微观结构有关,但对单相材料,微观结构对的影响不大,唯一可以控制的是材料中的微裂纹, 可以把微裂纹理解为各种缺陷的总和。所以强化措施大多从消除缺陷和阻止其发展着手。值得提出的有下列几个方面。(1)微晶 , 高密度与高纯度为了消除缺陷 ,提高晶体的完整性,细、密、匀、纯是当前陶瓷发

2、展的一个重要方面。近年来出现了许多微晶、高密度、高纯度陶瓷,例如用热压工艺制造的陶瓷密度接近理论值,几乎没有气孔,特别值得提出的是各种纤维材料及晶须。(2)预加应力人为地预加应力,在材料表面造成一层压应力层,就可提高材料的抗张强度。脆性断裂通常是在张应力作用下,自表面开始 ,如果在表面造成一层残余压应力层,则在材料使用过程中表面受到拉伸破坏之前首先要克服表面上的残余压应力。(3)化学强化如果要求表面残余压应力更高,则热韧化的办法就难以做到,此时就要采用化学强化(离子交换)的办法。这种技术是通过改变表面的化学组成,使表面的摩尔体积比内部的大。由于表面体积胀大受到内部材料的限制 ,就产生一种两向状

3、态的压应力。4)陶瓷材料的增韧所谓增韧就是提高陶瓷材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。相变增韧 :利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。例如,利用 的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。研究了多种 ?的相变增韧 ,由四方相转变成单斜相 ,体积增大 3% 5%,如部分稳定,四方多晶陶瓷 (TZP), 增韧陶瓷 (ZT

4、A), 增韧莫来石陶瓷 (ZTM), 增韧尖晶石陶瓷 , 增韧钛酸铝陶瓷, 增韧 陶瓷 ,增韧以及增韧等。其中PSZ 陶瓷较为成熟 ,TZP,ZTA,ZTM 研究得也较多 ,PSZ,TZP,ZTA 等的新裂韧性已达 ,有的高达,但温度升高时 ,相变增韧失效。当部分稳定陶瓷烧结致密后,四方相颗粒弥散分布于其他陶瓷基体中(包括本身 ),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程

5、除消耗能量外,还将在主裂纹作用区产生压应力 ,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料强度和新裂韧性大幅度提高。因此,这种微结构会产生三种不同的增韧机理。在氧化锆中具有亚稳态四方相的盘状沉淀的微粒,如图 1-55所示。首先,随着裂纹发展导致的应力增加。会使四方结构的沉淀相通过马氏体相变转变为单斜结构,这一相变吸收了能量并导致体积膨胀产生张应力。这种微区的形变在裂纹附近尤为明显。其次,相变的粒子周围的应力场会吸收额外的能量,并形成许多微裂纹。这些微结构的变化有效地降低了裂纹尖端附近的有效应力强度。 第三, 由于沉淀颗粒对裂纹的阻滞作用和局域残余应力场的效应,会引起裂纹的

6、偏转。裂纹偏转又引起裂纹的表面积和有效表面能增加,从而增加材料的韧性。上述的情况同样适甩于粒子和短纤维强化的复合材料中。微裂纹增韧 : 部分稳定 ZrO2 陶瓷在烧结冷却过程中,存在较粗四方相向单斜相的转变,引起体积膨胀 ,在基体中产生弥散分布的裂纹或者主裂纹扩展过程中在其尖端过程区内形成的应力诱发相变导致的微裂纹 ,这些尺寸很小的微裂纹在主裂纹尖端扩展过程中会导致主裂纹分叉或改变方向,增加了主裂纹扩展过程中的有效表面能,此外裂纹尖端应力集中区内微裂纹本身的扩展也起着分散主裂纹尖端能量的作用,从而抑制了主裂纹的快速扩展,提高了材料的韧性。表面残余压应力增韧:陶瓷材料可以通过引入残余压应力达到增

7、强韧化的目的。控制含弥散四方颗粒的陶瓷在表层发生四方相向单斜相相变,引起表面体积膨胀而获得表面残余压应力。由于陶瓷断裂往往起始于表面裂纹 ,表面残余压应力有利于阻止表面裂纹的扩展,从而起到了增强增韧的作用。弥散增韧 : 在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧的效果,这称为弥散增韧。 这种细粉料可能是金属粉末 ,加入陶瓷基体以后,以其塑体变形 ,来吸收弹性应变能的释放量,从而增加了断裂表面能,改善了韧性。细粉末也可能是非金属颗粒,在与基体生料颗粒均匀混合之后,在烧结或热压时,多半存在于晶界相中,以其高弹性模量和高温强度增加了整体的断裂表面能,特别是高温断裂韧性。当基体的第二相为弥散颗粒

8、时,增髯机制可能是裂纹受阻或裂纹偏转、相变增韧和弥散增韧。影响第二相颗粒增韧效果的主要因素是基体与第二相颗粒大弹性模量和热膨胀系数之差以及两相之间的化学相容性。其中,化学相容性是要求既不出现过量的相间化学反应,同时又能保证较高的界面结合强度,这是颗粒产生有效增韧效果的前提条件。当陶瓷基体中加入的颗粒具有高弹性模量时就会产生弥散增韧。其机制为 :复合材料受拉伸时,高弹性模量第二相颗粒阻止基体横向收缩。为达到横向收缩协调,必需增大外加纵向拉伸压力,即消耗更多外界能量,从而起到增韧作用。颗粒弥散增韧与温度无关,因此可以作为高温增韧机制。纤维增强增韧复合材料,将在下节陈述。在过去的 20 年中,人们在

9、陶瓷材料的增韧方面做了大量的工作,通过对材料微结构的控制,成功的提高了断裂韧性和多晶、多相陶瓷的强度。到目前为止人们已经得到强度约1GPa,断裂韧性6l0Mpa.m1/2 的氮化硅;微粒稳定氧化锆和四方多晶氧化锆的断裂韧性和强度已可分别达到6l0MPa.m1/2 和 0.6lGPa;具有金属韧性的易延展陶瓷(金属的体积百分含量不超过30)显示出更高的断裂韧性(1015 MPa.m1/2)。而利用纤维增强的复合材料则因为其复合结构能在材料发生断裂前吸收大量的断裂功,有更加惊人的韧性,标准的屈服测量结果显示其断裂韧性可以达到2025 MPa.m1/2。但值得注意的是复合材料的断裂过程与Griffi

10、th理论所描述的尖锐裂纹的传播过程是不同的。所有这些断裂韧性的进步使陶瓷材料增加了许多新的在结构方面的应用。 例如, 氮化硅在汽车部件(涡轮压缩机转子等)及高温汽轮机上的应用、形变增韧多晶氧化锆及其复合材料在大范围的低温条件下的应用,及纤维状或须状纤维增强的玻璃、玻璃状陶瓷和多晶陶瓷在发动机部件、切割工具、轴承等许多方面上的应用。(4)陶瓷的理论强度和实际断裂强度相差1-3 个数量级。引起陶瓷实际抗拉强度较低的原因是陶瓷中因工艺缺陷导致的微裂纹,在裂纹尖端引起很高的应力集中,裂纹尖端之最大应力可达到理论断裂强度或理论屈服强度(因陶瓷晶体中可动位错少,位错运动又困难,所以,一旦达到屈服强度就断裂了)。因而使陶瓷晶体的抗拉强度远低于理论屈服强度

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号