材料测试技术

上传人:豆浆 文档编号:54013702 上传时间:2018-09-07 格式:PPT 页数:128 大小:3.90MB
返回 下载 相关 举报
材料测试技术_第1页
第1页 / 共128页
材料测试技术_第2页
第2页 / 共128页
材料测试技术_第3页
第3页 / 共128页
材料测试技术_第4页
第4页 / 共128页
材料测试技术_第5页
第5页 / 共128页
点击查看更多>>
资源描述

《材料测试技术》由会员分享,可在线阅读,更多相关《材料测试技术(128页珍藏版)》请在金锄头文库上搜索。

1、2018/9/7,1,材料测试技术 -材料X射线衍射与电子显微分析 材料学院 李强,X射线衍射分析 电子显微分析 其他分析方法简介,2018/9/7,2,主要内容X射线衍射分析,第一章 X射线的性质 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法 第五章 X射线物相分析 第六章 宏观应力测定,2018/9/7,3,主要内容电子显微分析,第七章 晶体的极射赤面投影 第八章 多晶体织构分析 第九章 电子光学基础 第十章 透射电子显微镜 第十一章 复型技术 第十二章 电子衍射 第十三章 晶体薄膜衍衬成像分析,2018/9/7,4,主要内容表面分析,第十四章 扫描电子显微镜 第

2、十五章 电子探针显微分析 第十六章 其他分析方法简介,2018/9/7,5,课程性质,本课程是一门实验方法课。X射线衍射分析和电子显微分析是现代材料研究的常用方法,是材料工作者的眼睛,它主要用来分析材料的微观组织结构与显微成份。,2018/9/7,6,课程要求,掌握基本原理 了解常用的实验方法,能从X射线与电镜分析的角度设计具体课题的检测方案,并制备样品 能分析X射线衍射图谱与电镜照片,了解一点其他分析方法,看懂文献中的相关内容。,2018/9/7,7,主要参考书,本课程以周玉等编著的材料分析测试技术材料X射线衍射与电子显微分析为基本教材,其它可参考下列教材: 材料科学与技术丛书(第2A卷)卡

3、恩 著 李树棠,晶体X射线学,1990,冶金工业出版社 黄胜涛,固体X射线学(一),高等教育出版社 魏全金,材料电子显微分析,1990,冶金工业出版社,2018/9/7,8,相 关 事 宜,成绩评定方法:平时、作业成绩占30%,课程结束时的期末考试成绩占70%。 自学能力强的同学不用上理论课 点名制度:每次都可能点名,没有迟到 点名三分之一缺勤不及格 实验课缺勤不及格 手机关机,2018/9/7,9,第一章 X射线的性质,伟大的物理学家,X射线发现者-伦琴 X射线:未知数,2018/9/7,10,1.1 引 言,.1895年德国物理学家-“伦琴”发现X射线 .1895-1897年伦琴研究清楚了

4、X射线的产生、传播、穿透力等大部分性质 .1901年伦琴获诺贝尔奖(第一人) .1912年劳埃进行了晶体的X射线衍射实验,第一次将X射线和晶体结构联系起来。一方面证明了X射线是一种波,另一方面开创了用X射线研究晶体结构的新领域。,2018/9/7,11,X射线最早的应用,在X射线发现后几个月医生就用它来为病人服务 右图是纪念伦琴发现X射线100周年发行的纪念封,2018/9/7,12,历史上影响最大的10个实验,X射线的系列实验,霍奇金利用X射线衍射技术成功的揭示了复杂的化学药品青霉素的结构。通过测绘青霉素原子的3D排列图,霍奇金研究出了新的青霉素合成方法,为医生们治疗感染带来了新的希望。 霍

5、奇金采用同样的技术,研究明白了维生素B12的结构。 她在1964年获得了诺贝尔化学奖,这是其他女性无法企及的一项荣誉。,利用x射线对细小晶体进行结构分析,2018/9/7,13,1.2 X射线的本质,人的肉眼看不见X射线,但X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。 X射线呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。 X射线对动物有机体(其中包括对人体)能产生巨大的生理上的影响,能杀伤生物细胞。,X射线的特性,2018/9/7,14,X射线的本质 X射线也是电磁波的一种,波长在0.0110nm之间,用于衍射分析的X射线波长在0.050.

6、25nm之间。 金属部件无损探伤X射线波长一般小于0.1nm,2018/9/7,15,X射线具有波粒二相性,X射线的强度是衍射波振幅的平方( ),也是单位时间内通过单位截面的光量子数目。,2018/9/7,16,1.3 X射线的产生及X射线管,X射线的产生 基本条件:X射线是高速运动的粒子(一般用电子)与某种物质相撞击后猝然减速而产生 实质:高速运动的粒子与物质中的内层电子相互作用的结果。,2018/9/7,17,X射线管的结构,2018/9/7,18,X射线管,(1) 阴极发射电子。一般由钨丝制成,通电加热后释放出热辐射电子。 (2) 阳极靶,使电子突然减速并发出X射线。 (3) 窗口X射线

7、出射通道。既能让X射线出射,又能使管密封。窗口材料用金属铍或硼酸铍锂构成的林德曼玻璃。窗口与靶面常成3-6的斜角,以减少靶面对出射X射线的阻碍。,2018/9/7,19,X射线管,(4)高速电子转换成X射线的效率只有1%,其余99%都作为热而散发了。所以靶材料要导热性能好,常用黄铜或紫铜制作,还需要循环水冷却。因此X射线管的功率有限,大功率需要用旋转阳极 (5)焦点阳极靶表面被电子轰击的一块面积,X射线就是从这块面积上发射出来的。焦点的尺寸和形状是X射线管的重要特性之一。焦点的形状取决于灯丝的形状,螺形灯丝产生长方形焦点 X射线衍射工作中希望细焦点和高强度;细焦点可提高分辨率;高强度则可缩短暴

8、光时间,2018/9/7,20,旋转阳极,上述常用X射线管的功率为5003000W。目前还有旋转阳极X射线管、细聚焦X射线管和闪光X射线管。 因阳极不断旋转,电子束轰击部位不断改变,故提高功率也不会烧熔靶面。目前有100kW的旋转阳极,其功率比普通X射线管大数十倍。,2018/9/7,21,旋转阳极,2018/9/7,22,加速器中可以引出X射线,2018/9/7,23,加速器中引出X射线原理,2018/9/7,24,加速器中可以引出X射线,2018/9/7,25,加速器中可以引出X射线,2018/9/7,26,1.4 X射线谱 连续X射线谱,X射线强度与波长的关系曲线,称之X射线谱。 在管压

9、很低时,小于20KV(教材图1.5,课件中为50KV)的曲线是连续变化的,故称之连续X射线谱,即连续谱。,2018/9/7,27,对连续X射线谱的解释(经典),根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然产生至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。,2018/9/7,28,对连续X射线谱的解释(量子),量子力学解释,当能量为ev的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hv的光子,即“韧致辐射”。

10、 大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。 极限情况下,能量为ev的电子在碰撞中一下子把能量全部转给光子,那么该光子获得最高能量和具有最短波长,即短波限0。所有辐射都有一个最短波长,称之短波限0,强度的最大值在0的1.5倍处。 eV = hvmax = hc/0 0 = 1.24/V (nm),2018/9/7,29,X射线管的效率,X射线管的效率,是指电子流能量中用于产生X射线的百分数, 即 随着原子序数Z的增加,X射线管的效率提高,但即使用原子序数大的钨靶,在管压高达100kv的情况下,X射线管的效率也仅有1左右,99的能

11、量都转变为热能。,2018/9/7,30,X射线谱-特征X射线谱,当管电压超过某临界值时,特征谱才可能出现,该临界电压称激发电压。当管电压增加时,连续谱和特征谱强度都增加,而特征谱对应的波长保持不变。 钼靶X射线管当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加有少数强谱线,它们即特征X射线谱。 钼靶X射线管在35KV电压下的谱线,其特征x射线分别位于0.63和0.71处,后者的强度约为前者强度的五倍。这两条谱线称钼的K系,2018/9/7,31,特征X射线的产生机理,特征X射线的产生机理与靶物质的原子结构有关。 原子壳层按其能量大小分为数层,通常用K、L、M、N等字母代

12、表它们的名称。 当管电压达到或超过某一临界值时,则阴极发出的电子在电场加速下,可以将靶物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子处于激发状态。 处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射线波长一定。,2018/9/7,32,特征X射线的产生机理,如果K层电子被击出K层,称K激发,L层电子被击出L层,称L激发,其余各层依此类推。 当K电子被打出K层时,如L层电子来填充K空位时,则产生K辐射。此X射

13、线的能量为电子跃迁前后两能级的能量差,即产生K激发的能量为WKhK,阴极电子的能量必须满足eVWKhK,才能产生K激发。其临界值为eVKWK ,VK称之临界激发电压。,2018/9/7,33,特征X射线的命名方法,同样当K空位被M层电子填充时,则产生K辐射。M能级与K能级之差大于L能级与K能级之差,即一个K光子的能量大于一个K光子的能量;但因LK层跃迁的几率比MK迁附几率大,故K辐射强度比K辐射强度大,约五倍左右。 显然, 当L层电子填充K层后,原子由K激发状态变成L激发状态,此时更外层如M、N层的电子将填充L层空位,产生L系辐射。因此,当原子受到K激发时,除产生K系辐射外,还将伴生L、M等系

14、的辐射。除K系辐射因波长短而不被窗口完全吸收外,其余各系均因波长长而被吸收。 K双线的产生与原子能级的精细结构相关。L层的8个电子的能量并不相同,而分别位于三个亚层上。K双线系电子分别由L和L两个亚层跃迁到K层时产生的辐射,而由LI亚层到K层因不符合选择定则,因此没有辐射。,2018/9/7,34,连续谱与特征谱的对比,2018/9/7,35,莫色莱定律,特征X射线谱的频率(或波长)只与阳极靶物质的原子结构有关,而与其他外界因素无关,是物质的固有特性。19131914年莫色莱发现物质发出的特征谱波长与它本身的原子序数间存在以下关系: 根据莫色莱定律,将实验结果所得到的未知元素的特征X射线谱线波

15、长,与已知的元素波长相比较,可以确定它是何元素。它是X射线光谱分析的基本依据 。,2018/9/7,36,1.5 X射线与物质的相互作用,X射线与物质的相互作用,是一个比较复杂的物理过程。 一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果,并且吸收是造成强度衰减的主要原因。,2018/9/7,37,X射线的散射,当X射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,其振动频率与入射X射线的频率相同。 任何带电粒子作受迫振动时将产生交变电磁场,从而向四周辐射电磁波,其频率与带电粒子的振动频率相同。 由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干

16、条件,故称为相干散射。相干散射是X射线在晶体中产生衍射现象的基础。,X射线经束缚力不大的电子(如轻原子中的电子)或自由电子散射后,可以得到波长比入射X射线长的X射线,且波长随散射方向不同而改变。这种散射现象称为康普顿散射或康普顿一吴有训散射,也称之为不相干散射,因散射线分布于各个方向,波长各不相等,不能产生干涉现象。,2018/9/7,38,不相干散射,入射X射线遇到约束松散的电子时,将电子撞至一方,成为反冲电子。入射线的能量对电子作功而消耗一部份后,剩余部份以X射线向外辐射。散射X射线的波长()比入射x射线的波长()长,其差值与角度(2)之间存在如右关系: 不相干散射在衍射图相上成为连续的背底,其强度随(sin/)的增加而增大,在底片中心处(射线与底片相交处)强度最小,越大,强度越大。,2018/9/7,39,X射线的吸收曲线,X射线通过物质时的衰减,是吸收和散射造成的。 如果用m仍表示散射系数,m表示吸收系数。在大多数情况下吸收系数比散射系数大得多,故mm。质量吸收系数与波长的三次方和元素的原子序数的三次方近似地成比例,因此,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号