1930年Hückel用LCAO-MO近似,采取简化手续处理了大量有 机共轭分子,形成了Hückel分子轨道法利用HMO可解释离域键的形成,同时引出电荷密度、键序、自 由价等概念共轭分子是有机分子中的一类重要的分子,在无机分子中也有一些是共轭分子对于共轭分子,前面讨论的定域轨道模型(价键理论)不再适用,因共轭分子中存在着离域键5.3 休克尔分子轨道理论(H Hü ückelckel HMO HMO))和共轭分子1、Hückel基本假定:(1) 键与键不同,将它们分开处理;(2) 所有内层电子,成键电子和原子核一起冻结为“分子实”, 构成分子骨架每个原子剩余一个垂直分子平面的p轨道, p轨道中电子形成离域键共轭分子具有相对不变的σ键骨架,π电子围绕分子骨架运动,忽略-π电子间的直接相互作用,只研究π电子的分子轨道和能级;将分子中每一个π电子看成是在”分子实”和其余π电子组成的有效势场中运动从而得到π电子的单电子波函数3) 每个π电子k的运动状态用单电子波函数ψk(分子轨道)描述,其Schrödinger方程为:Ĥπψk = Ekψk承认分子轨道理论:LCAO-MO,用变分法得分子轨道和能级;分子轨道内电子排布符合能量最低原理、保里原理和洪特规则;如共轭分子有n个C原子,每个C原子提供一个p轨道i,这这些p轨轨道组组成分子轨轨道,按LCAO-MO方法,可将分子轨轨道Ψ表示成为为n个p轨轨道的线线性组组合。
由变分原理:根据变分法,要使E最小,必须回忆H2+处理得到的久期方程组:这里得到的久期方程为:而为了保证系数ci不为0 ,则系数行列式=0引入以下假设:b.只考虑相邻C原子轨道间的相互作用 :c.忽略所有的重叠积分a.对一个直链共轭体系:2. 直链共轭多烯烃的HMO法得到x值后,则 E=-x分子轨道示意图:有机共轭分子均为平面构型,丁二烯4C+6H位于分子平面上,C原子sp2杂化轨道与H和C原子的原子轨道组成分子轨道,4个C原子的2Pz轨道组成离域的-MO变分函数为:(1) (1) 写出写出HHü ückelckel行列式行列式(2) 解方程所以:因为:则:(3) 求分子轨道的组合系数将其它x值同样代回久期方程,得到另外三组ci系数, 则体系的分子轨道为:得:利用归一化条件:x1=-1.618代入,得:213E1=+1.618E2=+0.618E3=-0.618E4=-1.6184四个π电子填在Ψ1、Ψ2上,形成包含 4个C原子的离域键分子轨道能级图为:离域键的分子轨道图(4) 结果讨论对于丁二烯分子,其离域键的分子轨道能级图为:E4=-1.618C-C-C-C()4C原子E3=-0.618E2=+0.618E1=+1.618离域键的电子总能量:①离域π键总能(Eπ)和离域能(DEπ)离域键的电子总能量:定域键的电子总能量(即两个乙烯分子中电子总能量):离域能:利用变分法得到久期方程为:解:分子轨道由两个pz原子轨道线性组合而成:附:用HMO法求乙烯键的键能和分子轨道令:久期行列式为:相应的波函数为:得:E=2(+ )=2+2E1= +E2= -其分子轨道能级图为:+-+-+-+-ψ2 = 0.6015φ1 + 0.3717φ2 - 0.3717φ3 - 0.6015φ4 ψ1 = 0.3717φ1 + 0.6015φ2+ 0.6015φ3 + 0.3717φ4例如: ρ3②电荷密度第i个原子上出现的π电子 数i--第i个原子;k--π分子轨道编号;nk--π分子 轨道(Ψ)上的电子数;cki--π分子轨道(Ψ)上第i个原子 轨道的系数。
2×(0.6015)2 + 2×(-0.3717)2=1.0000③键 级ψ2 = 0.6015φ1 + 0.3717φ2 - 0.3717φ3 - 0.6015φ4 ψ1 = 0.3717φ1 + 0.6015φ2 + 0.6015φ3 + 0.3717φ4例如:P23i和j原 子间的 电荷密 度i,j--第i,j个原子;k--π分子轨道编号;nk- -π分子轨道(Ψ)上的电子数;cki, ckj --π分子 轨道(Ψ)上第i,j个原子轨道的系数反映键 长的长 短=2×(0.6015×0.6015)+2×(0.3717)×(-0.3717)=0.448对于丁二烯,F1 = F4 = Fmax- P12 = Fmax- P34 = 1.732-0.896 = 0.836F2 = F3 = Fmax- (P12+ P23) = Fmax- (P34+ P23) = 1.732-0.896-0.448 = 0.388所以,加成反应发生在1,4位上④自由价----原子化合成分子是有饱和性的,为了反映分 子中某原子的饱和程度,提出了自由价概念C2C3C1C40.836 0.388 0.388 0.8360.896 0.448 0.896H2C——CH——CH——CH21.00 1.00 1.00 1.00丁二烯的分子图 : 分子图是表示分子结构式图的一种较理想的形式,它能更本质地表达分子的性质。
我们可把每个C原子的电荷密度写在元素符号下,原 子间π电子键级写在原子联线上,用箭头标出原子的自由价 ,这样就得到一个分子的分子图: 平面正六边形的骨架,有6个pz轨道上的电子久期行列式:如苯(C6H6) 是最常见的环烯烃3.环形共轭分子的HMO法则:MO能级图E2 E3 +2pzE1 +2E4 E5 -E6 -2离域键的电子总能量:定域键的电子总能量(即三个乙烯分子中电子总能量):离域能对于单环共轭多烯分子 CnHn,由结构式可列出久期 行列式,解之,可得单环共轭体系的分子轨道能级图:-2+2[C2H4] C3H3+ C4H4 C5H5- C6H6 C7H7+ C8H8 2 2 [4] 6 6 6 [8]●当n=4m+2时,所有成键轨道中充满电子,反键轨道是空的 ,构成稳定的π键体系具有4m+2 个π电子的单环共轭体系为 芳香稳定性的结构●当 n=4m时,除成键轨道充满电子外,它还有一对二重简并 的非键轨道,在每一轨道中有一个π电子,从能量上看是不稳 定的构型,不具有芳香性。
n个p轨道和m个电子所形成的离域键记作:(2) 标记(1) 形成条件v 共轭原子必须同在一个平面上,且每个原子可以提供一个彼此平行的p轨道或合适的d轨道;v 总的电子数小于参与成键的p轨道数目的二倍前者保证轨道的最大重叠,后者保证成键电子数大于反键电子数4. 离域键的形成及离域效应丁二烯萘苯n=m,p 轨道数与电子数相等,有机共轭分子的离域键大都是正常大键,为 —共轭① 正常大键(3) 离域键的分类每个C原子采用sp2杂化,与H或Cl的AO形成σ键,剩余同向的(2p)1与Cl上同向的(2p)2形成离域键m n, 电子数多于p轨道数( p— 共轭)双键旁边邻接带有孤对电子的O,N,Cl,S原子时易形成② 多电子大键丙烯基阳离子③ 缺电子大键(mn) 电子数少于p轨道数v 共轭分子导电性增加v 体系能量降低,能级间隔变小,光谱红移,有颜色v 酸碱性改变,得失电子能力不同v 化学反应性质改变共轭效应是化学中的基本效应共轭效应是化学中的基本效应。