现代工业橡胶的配方设计原理及方法

上传人:飞*** 文档编号:50751871 上传时间:2018-08-10 格式:PPT 页数:78 大小:1,003KB
返回 下载 相关 举报
现代工业橡胶的配方设计原理及方法_第1页
第1页 / 共78页
现代工业橡胶的配方设计原理及方法_第2页
第2页 / 共78页
现代工业橡胶的配方设计原理及方法_第3页
第3页 / 共78页
现代工业橡胶的配方设计原理及方法_第4页
第4页 / 共78页
现代工业橡胶的配方设计原理及方法_第5页
第5页 / 共78页
点击查看更多>>
资源描述

《现代工业橡胶的配方设计原理及方法》由会员分享,可在线阅读,更多相关《现代工业橡胶的配方设计原理及方法(78页珍藏版)》请在金锄头文库上搜索。

1、现代工业橡胶的配方设计配方体系表示方法、设计原则、性 能对配方体系的要求4.1橡胶配方设计的基本概念 v橡胶配方就是表示能满足制品规定使用性能及加工性能要求的胶料中,各种原材料的种类和用量的搭配方案。生产中所用配方应该包括:胶料的名称及代号、胶料的用途、各种配合剂的用量、生胶含量、密度以及胶料的物性。v所谓配方设计就是如何确定这种比例关系,是橡胶制品生产过程中的关键环节。4. 1.1 橡胶配方设计的原则橡胶配方设计的任务是力求使橡胶制品在性能、成本和 工艺可行性三个方面取得最佳的综合平衡。通常,要遵 循以下几条原则: 充分了解制品的性能要求、使用条件;半成品的性 能一般应高于成品指标的15%。

2、 由于橡胶制品的性能一般是多方面的,性能在满足 性能要求方面,要抓住主要矛盾,平衡次要矛盾; 对多部件制品,要从整体考虑; 平衡使用性能与加工性能; 考虑配合剂之间的相互影响; 低污染; 简化配方,降低成本。 4.1.2 橡胶配方设计的程序配方设计的基本程序包 调研 包括制品的使用条件,如温度、压力、是否 接触介质、 使用的频率等方面。 选材 根据调研结果,选材、确定基本配方;包括 生胶材料及各种配合剂各种生胶的基本配方可通过 资料查询。 配方筛选 确定能够反映产品性能的试验方法,反 复实验进行筛选; 检验 通过选定的配方制备胶料、产品,进行验证 ; 定工艺 根据试验过程拟定加工工艺条件; 评

3、定 对制品的性价比进行综合评定。4.1.3 橡胶配方的表示方法及其计 算 橡胶配方的表示方法v 基本配方基本配方是用质量份数表示的配方,即以生胶的 质量为100份,其它配合剂用量都以相对的质量份数来 表示。v 质量百分数配方质量百分数配方是以胶料总质量为100%,生胶及 各种配合剂用量都用质量百分数来表示。v 体积百分数配方体积百分数配方是以胶料的总体积为100%,生胶 及各种配合剂用量都用体积百分数来表示。v 生产配方根据炼胶机的容量,由基本配方换算出的实际生 产投料量。4.2配合体系与制品性能的关系 4. 2.1 配合体系与拉伸强度的关系拉伸强度是指试片受拉伸作用至断裂时单位面积上所承受的

4、最大拉伸应力,单位MPa。在硫化胶的测定项目中一般都包括这项指标。工业用橡胶制品,多以拉伸强度作为产品质量的主要指标。v 橡胶品种主链上有极性取代基或芳基的橡胶的拉伸强度较高。就纯橡胶配合而言,天然橡胶和聚氨酯橡胶的拉伸强度最高,丁基橡胶、乙丙橡胶、氯丁橡胶次之,丁苯橡胶、丁腈橡胶较差。v 硫化体系交联密度 随着交联密度的增加,橡胶拉伸强度,出现先增后 降的趋势,存在最佳值,这就要求适当选择硫化剂的用量 。交联健的类型 硫化胶的拉伸强度随着交联键能的增加而减小。当 交联键能较弱时,在高应力集中下会很快断裂,从而解除 了所承受的负荷,而将应力转移分配给相邻链段上,使得 网络作为一个整体均匀地承受

5、较大应力;同时,弱交联键 的较早断裂还有利于该部分主链的定向排列和结晶,因此 存在弱交联键的硫化胶的拉伸强度较大。例如,适当增加 硫黄用量,采用促进剂M或与胍类促进剂并用,可提高键 能较低的多硫键(Sx)的含量,提高拉伸强度。v 填充体系一般而言,填充剂粒径越小、比表面积越大、结构 性越高,补强效果越好。v 增塑体系增塑剂一般会使橡胶的拉伸强度降低,与橡胶相容 性好、具有限制橡胶分子运动的高黏度油类增塑剂可提高 橡胶的拉伸强度。其它,如共混、使用表面活性剂、偶联剂也可提高 橡胶的拉伸强度。4.2.2 配合体系与撕裂强度的关系指将带有切口的试片撕裂时所需的最大力,其单位为 N/m。v 橡胶品种

6、天然橡胶、氯丁橡胶等结晶性橡胶的撕裂性较好。 几种橡胶的抗撕裂性强弱顺序是:NRCRSBRNBRv 硫化体系多硫键具有较高的撕裂强度。v 填充体系粒子细、活性大的炭黑、白炭黑补强时,撕裂强度 明显改善;炭黑用量一般在5060phr时可获得最高撕裂强 度。但用量过大时撕裂强度反而下降。v 增塑体系 适当加入增塑剂有助于撕裂强度的提高,主要是一 些树脂类如古马隆树脂、酚醛树脂等。4.2.3 配合体系与定伸应力的关系定伸应力是指试样被拉伸至一定长度时所受的力与试样 在拉伸前的截面积之比,单位为MPa,工业中常用的有伸 长为100%、300%和500%时的定伸应力。v 橡胶品种 要求高定伸应力的橡胶制

7、品可以用天然橡胶、丁腈 橡胶、聚氨酯橡胶来制备;低定伸应力的制品可采用天然 橡胶、高顺丁橡胶。v 硫化体系 随着交联密度的增加,定伸应力随之增加。因此, 调整硫化体系中硫黄及促进剂的用量来增大交联密度,进 而提高定伸应力。v 填充体系 增加粒度小、结构性高的高活性填充剂的用量可提 高定伸应力。以炭黑的效果最为显著。对丁苯橡胶来说, 主要取决于炭黑的结构性。v 增塑体系 增塑剂用量增加,定伸应力降低。4.2.4 配合体系与回弹性的关系 回弹性又称冲击弹性,是指橡胶受冲击以后恢复原 状的能力。试验的时候是使一定高度的重物自由落到橡胶 试样表面上,用重物回弹的高度来评价。v 橡胶品种 从结构因素来说

8、,分子链越柔顺、分子间作用力越 小的橡胶,其弹性越好。以天然橡胶、顺丁橡胶、异戊橡 胶以及硅橡胶的回弹性较好。v 硫化体系 在一定范围内,弹性随交联密度的增大而提高,多 硫键的回弹性高于低硫键和碳碳交联键。适当增加硫黄用 量有利于硫化胶弹性的增加。v 填充体系 填充剂用量越少、胶料含胶率越高,有利于弹性的 增加。炭黑特别是细粒子活性炭黑,对硫化胶弹性的降低 影响较大,对弹性要求高的胶料多采用中粒子炭黑。v 增塑体系 增塑剂对硫化胶弹性的影响一般不大,但用量过大 时会使弹性降低。4.2.5 配合体系与耐磨性能的关系硫化胶所受的磨耗作用力主要包括:刨削力、冲击 力、切割力、撕裂力以及剪切力。要具备

9、良好的耐磨性能 ,硫化胶需同时具备较低的摩擦系数和优异的物理机械性 能。v 橡胶品种从结构因素分析,分子链柔顺性好、有共轭体系存在 、含有芳基的极性橡胶的耐磨性能较好。聚氨酯橡胶具有 特殊的耐磨性能,但其耐冲击、耐切割性能较差。其次是 顺丁胶、丁苯橡胶、天然橡胶。对丁苯橡胶和天然橡胶来 说,当温度低于15天然橡胶的耐磨性较好;而当温度在 15以上时,丁苯橡胶的耐磨性较好。v 填充体系加入细粒子、高结构性的炭黑能够提高硫化胶的耐 磨性能,以高结构高耐磨炉黑最好。填充的量一般 有最佳值,多了反而降低。对天然或丁苯橡胶一般 用量为5060phr。白色填料以粒径为20nm左右的白炭黑为最好,其 次是氧

10、化锌。v 硫化体系随交联密度的增加,耐磨性能会出现最大值。同时 考虑到炭黑的吸附作用,硫化剂和促进剂的用量要 适当多一些。促进剂应选择硫化平坦性能较好的噻 唑类为好。此外,正确使用防老剂也能间接提高制品的耐磨性 能。4.2.6 配合体系与耐屈挠性能的关 系 橡胶在往复屈挠过程中,由于化学和机械的作用, 在弯曲部分所产生的表面裂口称为屈挠龟裂。橡胶产生屈挠龟裂的过程分为两个阶段,即龟裂的 发生阶段和龟裂的增长阶段。各种橡胶在这两个阶段表现 的特征不同,以天然橡胶和丁苯橡胶为例,天然橡胶容易 产生龟裂,但龟裂增长的速度慢;而丁苯橡胶难以产生龟 裂,但一旦产生龟裂,其增长的速度较为迅速。v 橡胶品种

11、橡胶制品的耐屈挠性能主要取决于橡胶的品种。几种 橡胶的耐龟裂发生的能力顺序为:丁基橡胶氯丁橡胶 丁苯橡胶丁腈橡胶天然橡胶。而抗龟裂增长的顺序为 :丁基橡胶氯丁橡胶天然橡胶丁苯橡胶丁腈橡胶 。可见丁基橡胶的耐屈挠性能为最好,但在温度升高时其 耐屈挠性能显著降低。v 填充体系 经过表面处理的、粒径为4080nm的填充剂的耐屈 挠性能较好;粒径大、各向同性的填充剂易于屈挠中的 橡胶形成空隙,从而促进龟裂的增长。 填充剂的用量不宜过多,否则会使硫化胶的定伸应 力和硬度增高,导致龟裂部位的应力增大,加快龟裂的 增长。而且填料若分散不均时,也会使硫化胶在屈挠过 程中形成应力集中,促进空隙的产生,可采用脂肪

12、酸盐 来提高填料的分散效果。v 硫化体系过硫时硫化胶的耐屈挠性能显著下降,为提高耐屈 挠性能,硫化程度最好取比正硫化少欠一点。4.2.7 配合体系与耐疲劳性能的关 系橡胶制品承受交变循环应力或应变时所引起的局部结 构变化和内部缺陷的发展过程,称为橡胶的疲劳。疲劳 会使橡胶的力学性能下降,并最终导致龟裂或完全断裂 。v 橡胶品种在低应变疲劳下,橡胶的Tg愈高,耐疲劳破坏性愈 好;在高应变疲劳下,具有拉伸结晶特性的橡胶耐疲劳 性能较好。v 硫化体系易于形成多硫键的硫化体系,有利于耐疲劳性能的 提高,普通硫化体系最为有利。v 填充体系 粒子细、结构性高的炭黑,耐疲劳性能较好,其 用量一般在50phr

13、左右。v 增塑体系 稀释作用小的粘稠性增塑剂有利于耐疲劳性能的 提高,但用量应尽量降低。4.2.8 配合体系与硬度的关系橡胶硬度是指抵抗外力压入的能力,常用邵尔硬度 计测定。硫化胶的硬度范围在10100之间。v 硫化体系随着交联密度的增加,硫化胶的硬度增加。v 填充体系一定范围内,增加粒子细、结构性高的填充剂的用 量可提高硫化胶的硬度。也可增加高苯乙烯树脂、酚醛树 脂等物质以提高硫化胶的硬度。v 增塑体系使用增塑剂通常会使硫化胶制品的硬度降低。 4.2.9 压缩永久变形性v 硫化体系随着交联密度的增加,硫化胶的压缩永久变形降低 。因此,要降低橡胶制品的永久变形性,必须是制品达到 正硫化;若制品

14、需在高温下使用,用过氧化物进行交联, 可降低制品压缩永久变形性。v 填充体系填充剂粒子的形状对橡胶制品的永久变形性影响 较大,其中球状或片状粒子有利于永久变形性的降低;而 针状、棒状粒子则不利于永久变形性的降低。 4.3配合体系与胶料工艺性能的 影响 v1 配合体系与胶料粘度的关系各种生胶都具有一定的粘度,可根据用途和需要加 以选择。一般而言,填充剂的加入会使胶料的粘度增加。 加入增塑剂则能够降低胶料的粘度。v2 配合体系对胶料混炼性能的影响胶料的混炼性能是指配合剂是否容易与橡胶混合均匀。 胶料的混炼性主要取决于配合剂与橡胶之间的浸润性。疏水性填充剂,如炭黑容易被橡胶所浸润,混炼性能较 好;亲

15、水性填充剂,如碳酸钙、陶土、白炭黑等,不易被 橡胶浸润,混炼性能较差。可通过化学改性,或加入表面 活性剂加以改进。增塑剂与橡胶的相容性一般较好,易于分散。v 3 配合体系对包辊性能的影响胶料的包辊性能主要取决于生胶的强度和粘着性能 。影响生胶强度的因素包括生胶的分子量及其拉伸结 晶性能。天然橡胶具有最好的包辊性能,乳聚合成橡胶次 之,溶聚的,特别是分子量分布较宽的橡胶包辊性能较差 。改善的途径有以下几种v 通过加入活性、结构性高的填充剂,如炭黑、白炭黑 等增加生胶的强度,进而提高胶料地包辊性能。v 加入增粘性增塑剂 如高芳烃操作油、松焦油、古马 隆树脂、酚醛树脂等。v 与少量天然橡胶并用。v4

16、 配合体系对焦烧特性的影响焦烧产生的原因主要是硫化体系选择不当导致 。因此,应尽量选用后效性或临界温度较高的促 进剂,也可添加防焦剂进一步改善。碱性炉法炭黑及高结构性炭黑具有促进硫化作 用,易引起焦烧;而酸性的槽法炭黑,对硫化起 延缓作用,一般不易焦烧。增塑剂的加入一般都具有延缓焦烧的作用。4.4特种性能橡胶的配合 v1 耐热橡胶橡胶在长时间热老化作用下保持原有物理机械性能的 能力称为耐热性。要提高橡胶制品的耐热性,主要通过两 种途径:一是从橡胶分子结构对其分子运动的影响出发, 探求提高软化温度的方法;二是从橡胶及其交联网与热化 学反应间的关系出发,寻找提高热稳定性和化学稳定性的 方法。 橡胶品种的选择常用的有NBR、CR、EPDM、IIR、Q、FPM等 硫化体系单硫键键能比多硫键键能高,耐热性好。因此,耐热 橡胶应采用“低硫高促”的硫化体系。 防护体系

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号