《建筑结构》第09讲

上传人:wt****50 文档编号:50566445 上传时间:2018-08-08 格式:PPT 页数:33 大小:331KB
返回 下载 相关 举报
《建筑结构》第09讲_第1页
第1页 / 共33页
《建筑结构》第09讲_第2页
第2页 / 共33页
《建筑结构》第09讲_第3页
第3页 / 共33页
《建筑结构》第09讲_第4页
第4页 / 共33页
《建筑结构》第09讲_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《《建筑结构》第09讲》由会员分享,可在线阅读,更多相关《《建筑结构》第09讲(33页珍藏版)》请在金锄头文库上搜索。

1、第八章 受弯构件的裂缝宽度和挠度计算n 本章的内容属于正常使用极限状态的内容n 本章主要介绍:受弯构件的挠度计算;钢筋混凝土构件的裂 缝宽度计算。重点是实际挠度计算和允许挠度的确定,裂缝宽度 计算和裂缝允许值的确定。 n 规范规定,根据具体使用要求,构件除进行承载力计算外, 尚需进行变形和裂缝宽度计算,把按规定所求得的变形及裂缝宽 度控制在允许值范围内。n 它们的设计表达式分别为:n wmaxwlimn fmaxf (一) 钢筋混凝土构件裂缝宽度的计算n一、裂缝出现和开展过程n 当钢筋混凝土纯弯构件(图8.1)的荷载加到某一数值时,截面上的 弯矩达到开裂弯矩,这时在截面受拉边最薄弱的地方产生第

2、一条或第一 批裂缝,裂缝出现的位置是随机的。 n 距裂缝截面愈远的截面回缩愈小,当离开裂缝某一距离lcr,min的截面 BB处,混凝土不再回缩。该处的混凝土拉应力仍与裂缝出现前瞬间的 拉应力相同。于是裂缝截面两侧附近混凝土与钢筋的应力分布如图8.1(b) 、(c)所示。 图8.1 裂缝的形成和开展机理 n 当裂缝间距小到一定程度后,即使弯矩再增加,混凝土也不会再出 现新的裂缝。这是因为这时钢筋传给混凝土的拉应力达不到混凝土的抗 拉强度ft所致(图8.1(d)、(e))。 n 裂缝出齐后,随着荷载的进一步增加,裂缝处钢筋的应力增加,受 压区高度不断减小,裂缝进一步开展。 二、裂缝宽度的计算公式n

3、1,平均裂缝间距lcr的计算n 理论分析表明,裂缝间距主要取决于有效配筋率te、钢筋直径d及其 表面形状。此外,还与混凝土保护层厚度c有关。n 有效配筋率te是指按有效受拉混凝土截面面积Ate计算的纵向受拉钢 筋的配筋率,即:n te=As/Aten Ate按下列规定取用:n 对轴心受拉构件,Ate取构件截面面积。n 对受弯、偏心受压和偏心受拉构件,取:n Ate=0.5bh+(bf-b)hfn 各种形式截面的Ate也可按图8.2取用。n 试验表明,有效配筋率愈高,钢筋直径d愈小,则裂缝愈密,其宽度 愈小,反之,钢筋直径d越大,裂缝愈疏,其宽度愈大。 这和钢筋的摩擦 力有关。n 根据试验和理论

4、分析结果,当混凝土保护层厚度c不大于65mm时, 对配置带肋钢筋混凝土构件的平均裂缝间距lcr按下式计算:n lcr=(1.9c+0.08d/te) 图8.2 有效受拉混凝土截面面积 n2,裂缝截面处钢筋应力的计算n 在荷载效应的标准组合下,钢筋混凝土构件受拉区纵向钢 筋的应力,根据使用阶段的应力状态(图8.3),可按下式计算: n (1) 轴心受拉(图8.3(a) n (2) 受弯(图8.3(b) 图8.3 荷载效应标准组合作用下构件截面的应力状态 n3,钢筋应变不均匀系数的计算n 由裂缝出现和开展过程的分析中可知,裂缝处和裂缝间 钢筋的应力是不相同的,即不均匀的。规范引进来表示钢筋应变不均

5、匀。n n 当算出的0.2时,取=0.2;当1时,取=1;对直 接承受重复荷载的构件,取=1。 4,平均裂缝宽度的计算n 平均裂缝宽度wm等于混凝土在裂缝截面的回缩量,即在平均裂缝间距长度内钢筋的伸长量与钢筋处在同一高度的受拉混 凝土纤维伸长量之差(图8.4): n n n 经分析和试验结果,规范规定,平均裂缝宽度wm按下式计算: 图8.4 裂缝处混凝土与钢筋的伸长量 n5,最大裂缝宽度的计算n 在荷载标准组合作用下,其短期最大裂缝宽度应等于平均裂 缝宽度wm乘以短期裂缝宽度的扩大系数s。经统计分析可得:对 于轴心受拉构件s=1.9;对于受弯构件s=1.66。短期最大裂缝宽度 还需乘上荷载长期

6、效应裂缝扩大系数l。 n 对各种受力构件,规范均取s11=0.91.66 1.5。这样,各种受力构件正截面最大裂缝宽度的统一计算公式为: n【例8.1】某钢筋混凝土屋架下弦按轴心受拉构件设计,其端节间最大的 荷载效应基本组合值N=240kN。荷载效应的标准组合值Nk=198kN。截面 尺寸bh=200mm140mm,混凝土强度等级为C25(ftk=1.78N/mm2),纵 筋为HRB335级钢筋,最大允许裂缝宽度wmax=0.2mm,混凝土保护层 c=25mm。试计算该构件的受拉钢筋。n【解】(1) 按承载力要求计算钢筋。n As=N/fy=800mm2n 选配416,As=804mm2As,

7、minn =minbh=112mm2。n(2) 裂缝宽度验算。n sk=Nk/As=246.3N/mm2n te=As/Ate=0.02870.01n =0.939n wmax=0.287mm0.2mm(不满足)n(3) 改配钢筋重新验算。n 改配420,As=1256mm2。n sk=Nk/As=157.64N/mm2n te=As/Ate=0.0448n =0.936n wmax=0.166mmwlim=0.2mm(满足)n【例8.2】某简支梁计算跨度l0=6.0m,截面尺寸bh=250mm700mm,混 凝土强度等级为C20,钢筋为HRB335级,承受均布恒荷载标准值(含梁 自重)gk=

8、19.74kN/m,均布活荷载标准值qk=10.5kN/m。经正截面承载力 计算,已配置纵向受拉钢筋为222+220(As=1388mm2)。该梁处于室内 正常环境,试验算其裂缝宽度是否满足要求。n【解】(1) 求荷载效应的标准组合值下,跨中截面的弯矩设计值Mk。n 恒荷载标准值引起的跨中最大弯矩:n Mgk=1/8gkl02=88.83kNmn 活荷载标准值引起的跨中最大弯矩:n Mqk=1/8qkl02=47.25kNmn 则Mk=Mgk+Mqk=88.83+47.25=136.08kNmn(2) 裂缝宽度验算n sk=Mk/0.87h0As=169.46N/mm2n 有效配筋率ten t

9、e=As/Ate=0.01590.01n 钢筋应变不均匀系数 =0.728n 混凝土保护层厚c=25mm,钢筋等效直径d=4As/u =21mm。 则wmax=0.198mmwlim=0.3mmn(满足要求)三、减小裂缝宽度的措施n (1) 改用较小直径的钢筋。钢筋愈细,钢筋与混凝土之间的粘结作 用越明显,lcr减小,Wmax也随之减小。n (2) 宜采用变形钢筋。n (3) 适当增加钢筋用量或增加构件截面使钢筋应力sk减小。n (4) 解决裂缝问题的最根本的方法是采用预应力混凝土结构。(二)受弯构件的挠度计算n一、受弯构件挠度计算的特点、原理和方法n 由材料力学中可知,承受均布荷载q的简支弹

10、性匀质梁, 其跨中挠度为: n 当梁的材料、截面和跨度一定时,挠度与弯矩之间呈线性 关系,如图8.6(a)中的虚线所示。n 钢筋混凝土梁则与匀质弹性梁有很大的区别:钢筋混凝土 梁的挠度与弯矩的关系是非线性的(图8.6(a)中实线所示)。 n 规范规定,钢筋混凝土受弯构件在正常使用极限状态下的 挠度,可根据构件的刚度用结构力学的方法计算。例如承受均 布荷载qk的钢筋混凝土简支梁,其跨中挠度为(B为构件的抗弯 刚度):n 通常用Bs表示钢筋混凝土梁在荷载效应的标准组合作用下 的截面抗弯刚度,简称短期刚度;而用B表示在荷载效应标准 组合并考虑荷载长期作用影响的截面抗弯刚度,可简称为长期 刚度。 图8

11、.6 (a)M-F关系曲线;(b) M-EI(B)关系曲线 n2,短期刚度的计算n 当弯矩一定时,截面刚度大,变形就小。 n 钢筋混凝土构件的变形计算(刚度计算)是以适筋梁第阶段的应力应变 状态为依据的,并假定符合平截面假定。 n 规范规定,在荷载效应的标准组合作用下钢筋混凝土受弯构件的短期刚度 Bs,应按下式计算: n3,长期刚度的计算n 当构件在持续荷载的作用下,其变形(挠度)将随时间的增 长而不断增长。其变化规律是:先快后慢,一般要持续变化数年 之后才比较稳定。产生这种现象的主要原因是截面受压区混凝土 的徐变。n 规范规定,受弯构件的挠度应按荷载效应标准组合并考虑荷 载长期作用影响的刚度

12、B进行计算。n 规范规定,受弯构件的刚度B应按下式计算:n4,钢筋混凝土受弯构件挠度的计算n 截面的抗弯刚度也是沿梁长方向变化的。弯矩大的截面抗弯刚度小 。 n 规范规定,在实用计算中采用最小刚度原则进行计算,即在等截面 构件中,可假定各同号弯矩区段内的刚度相等,并取用该区段内最大弯 矩处的刚度。即在简支梁中取最大正弯矩截面按式(8.14)算出的刚度作 为全梁的抗弯刚度;而在外伸梁中,则按最大正弯矩和最大负弯矩截面 分别按式(8.14)算出的刚度,作为相应正负弯矩区段的抗弯刚度,见图8.7所示。 图8.7 刚度原理 (a) 简支梁最小刚度;(b) 伸臂梁最小刚度 n【例8.4】某教学楼楼盖中的

13、一根钢筋混凝土简支梁,计算跨度为 l0=7.0m,截面尺寸bh=250mm700mm。混凝土强度等级为C25( Ec=2.8104N/mm2,ftk=1.78N/mm2),钢筋为HRB335级( Es=2.0105 N/mm2)。梁上所承受的均布恒荷载标准值(包括梁自 重)gk=19.74kN/m,均布活荷载标准值qk=10.50kN/m。按正截面计 算已配置纵向受拉钢筋40As=1256mm2).梁的允许挠度f =l0/250。试验算梁的挠度是否满足要求。n【解】(1) 计算梁跨中的Mk和Mq。n 恒荷载标准值产生的跨中最大弯矩:n Mgk=1/8gkl02=120.91kNm n 活荷载标

14、准值产生的跨中最大弯矩:n Mqk=1/8qkl02=64.31kNmn 由表1.1查得教学楼楼面活荷载准永久值系数q=0.5,故活荷载准永 久值在梁的跨中产生的最大弯矩为:n 0.5Mqk=0.564.31=32.16kNmn 于是,按荷载效应的标准组合作用下的跨中最大弯矩值为:n Mk=Mgk+Mqk=185.22kNmn 按荷载效应的准永久组合作用下的跨中最大弯矩值为:n(2) 计算系数。n sk=254.9N/mm2n te=0.0144n =0.784n(3) 计算短期刚度Bs。n E=Es/Ec=7.14n 受拉纵筋的配筋率:n =As/bh0=0.00755n 对矩形截面rf=0

15、,按式(8.13)得:n Bs=77577.8109Nmm2n(4) 计算刚度B。n 由于=0,由式(8.15)算得=2.0。n 由式(8.14)得:n B=42475.3109Nmm2n(5) 计算跨中挠度f。n f=22.26mmf=28.0mm (满足要求)n5, 最小截面高度或最大跨高比n1)图8.8的制作原理n 图8.8中的构件配置的钢筋为级钢筋,混凝土强度等级为C15C30 ,允许挠度值为l0/200,结构重要性系数0=1,活荷载的准永久值系数 q=0.4,且承受均布荷载的等截面简支受弯构件。n 图8.8的具体使用可参见有关计算图表。图8.8 钢筋混凝土受弯构件不需作挠度验算的最大跨高比 n2)提高受弯构件截面刚度的措施n (1) 最有效的措施是提高截面高度h,即减小跨高比l0/h0;n (2) 提高混凝土强度等级;n (3) 增加钢筋用量;n (4) 选用合理的截面,如形或T形截面;n (5) 采用预应力构件。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号