传感器(三种)在钢铁生产过程中的应用.docx

上传人:aa****6 文档编号:50165578 上传时间:2018-08-07 格式:DOCX 页数:18 大小:40.80KB
返回 下载 相关 举报
传感器(三种)在钢铁生产过程中的应用.docx_第1页
第1页 / 共18页
传感器(三种)在钢铁生产过程中的应用.docx_第2页
第2页 / 共18页
传感器(三种)在钢铁生产过程中的应用.docx_第3页
第3页 / 共18页
传感器(三种)在钢铁生产过程中的应用.docx_第4页
第4页 / 共18页
传感器(三种)在钢铁生产过程中的应用.docx_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《传感器(三种)在钢铁生产过程中的应用.docx》由会员分享,可在线阅读,更多相关《传感器(三种)在钢铁生产过程中的应用.docx(18页珍藏版)》请在金锄头文库上搜索。

1、传感器(三种)在钢铁生产过程中的应用传感器(三种)在钢铁生产过程中的应用第一章传感器 1.传感器的概念 传感器能感受规定的被测量,并按照一定的规律转换成可用输出信号的器件或装置。通常由敏感组件和转换组件组成。敏感组件指传感器中能直接感受(或响应)被测量的部分。转换组件指传感器中能将敏感组件感受(或响应)的被测量转换成适合于传输和(或)测量的电信号的部分。当输出为规定的标准信号时,则一般称为变送器。 最简单的传感器是由一个敏感组件(兼转换组件)组成,它感受被测量时直接输出电量,如热电阻、热电偶等。传感技术研究传感器的材料、设计、工艺、性能和应用等的综合技术。传感技术是一门边缘技术,它涉及物理学,

2、数学,化学,材视对其敏感组件部分的研究和开发,除了对其芯片的研究和开发外,也应十分重视传感器的封装工艺和封装结构的研究,这往往是引起传感器不能稳定可信地工作的关键因素之一。传感器的作用越来越被工业界、科技界、领导决策部门所认识。这是因为传感技术是信息技术的三大组成部分之一。 信息技术主要由信息的采集、信息的处理、信息的传输三大部分组成。传感技术与信息技术的关系:信息-采集-传感技术;信息-处理-计算机技术;信息-传输-通讯技术。信息的采集主要利用传感技术,信息的处理主要利用计算机技术,信息的传输主要采用通讯技术。传感技术是现代控制测量技术的主要环节。如果没有传感技术对原始数据进行准确、可信的测

3、量,无论对信息的转换、处理、传输和显示多么精确,都将失去任何意义。 人们往往把传感器誉为人的感官:眼光敏传感器;鼻气敏传感器;耳声敏传感器;嘴味觉传感器;手触觉传感器;而把计算机誉为人的大脑;把通讯技术作为人的经络。因此通过感官来获取信息(传感器),由大脑(计算机)发出指令,由经络(通讯技术)进行传输,现代信息技术缺一不可。 在科学研究和基础研究中,传感器能获取人类感官无法获得的大量信息。传感器的水平是衡量一个国家综合经济实力和技术水准的标志之一,它的发展水平、生产能力和应用领域已成为一个国家科学技术进步的重要标志,正如国外有的专家认为;谁支配了传感器,谁就支配了目前的新时代。 2. 传感器的

4、分类 传感器的分类目前尚无统一规定,传感器本身又种类繁多,原理各异,检测对象五花八门,给分类工作带来一定困难,通常传感器按下列原则进行分类。 2.1. 按被检测量分类 按被检测量分类,可分为物理量传感器,化学量传感器,生物量传感器。在各类传感器中可分为若干族,每一族中又可分为若干组。 2.2. 按物理原理分类 这种分类方法是以传感器的物理原理作为分类依据。可分为压阻式、压电式、电感式、电容式、应变式、霍尔式;这种分类方法有利于传感器专业工作者从原理和设计上作归纳性的分析和研究。 2.3. 按能量的传递方式分类 按能量的传递方式分类,传感器可分为有源传感器和无源传感器两大类。有源传感器将非电量转

5、换为电量。无源传感器本身并不是一个换能器,被测非电量仅对传感器中的能量起控制或调节作用,所以它必须具有辅助能源电源。 2.4. 按传感器的工作机理分类 按传感器的工作机理分类,可分为结构型和物性型两大类。结构型传感器是利用物理学中场的定律和运动定律等构成的。物理学中的定律一般是以方程式给出。对于传感器来说,这些方程式也就是许多传感器在工作时的数学模型。这类传感器特点是传感器的性能与它的结构材料没有多大关系。以差动变压器为例,无论使用坡莫合金或铁氧体做铁芯,还是使用铜线或其它导线做绕组,都是作为差动变压器而工作。物性型传感器是利用物质法则构成的。物质法则是表示物质某种客观性质的法则。这种法则大多

6、数以物质本身的常数形式给出。这些常数的大小,决定了传感器的主要性能。因此,物性型传感器的性能随材料的不同而异。如所有的半导体传感器,以及所有利用各种环境变化而引起的金属、半导体、陶瓷、合金等性能变化的传感器都是物性型传感器。另外,根据传感器输出是模拟信号还是数字信号,可分为模拟传感器和数字传感器;根据转换过程可逆与否,可分为双向传感器和单向传感器等等。 3. 传感器的特性 传感器的特性是指传感器的输入量和输出量之间的对应关系。通常把传感器的特性分为两种:静态特性和动态特性。 3.1传感器的静态特性 静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。

7、传感器的输入-输出关系:输入传感器输出、分辨力、误差因素)。 人们总希望传感器的输入与输出成唯一的对应关系,而且最好呈线性关系。但一般情况下,输入输出不会完全符合所要求的线性关系,因传感器本身存在着迟滞、蠕变、摩擦等各种因素,以及受外界条件的各种影响。 传感器静态特性的主要指针有:线性度、灵敏度、重复性、迟滞、分辨率、漂移、稳定性等。 3.2传感器的动态特性 动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 一般来说,传感器的输入和输出关系可用微分方程来描述。理论上,将微分方程中的一阶及以上的微分项取为零时,即可得到静态特性。因此传感器的静特性是其动特性的一个特

8、例。 传感器除了描述输入与输出量之间的关系特性外,还有与使用条件、使用环境、使用要求等有关的特性。 动特性是指传感器对随时间变化的输入量的响应特性。很多传感器要在动态条件下检测,被测量可能以各种形式随时间变化。只要输入量是时间的函数,则其输出量也将是时间的函数,其间关系要用动特性来说明。设计传感器时要根据其动态性能要求与使用条件选择合理的方案和确定合适的参数;使用传感器时要根据其动态特性与使用条件确定合适的使用方法,同时对给定条件下的传感器动态误差作出估计。总之,动特性是传感器性能的一个重要方面,对其进行研究与分析十分必要。总的来说,传感器的动特性取决于传感器本身,另一方面也与被测量的形式有关

9、。 规律性的: 1)周期性的:正弦周期输入、复杂周期输入; 2)非周期性的:阶跃输入、线性输入、其它瞬变输入。随机性的: 1)平稳的:多态历经过程、非多态历经过程; 2)非平稳的随机过程。 在研究动态特性时,通常只能根据“规律性”的输入来考虑传感器的响应。复杂周期输入信号可以分解为各种谐波,所以可用正弦周期输入信号来代替。其它瞬变输入不及阶跃输入来得严峻,可用阶跃输入代表。因此,“标准”输入只有三种;正弦周期输入、阶跃输入和线性输入。而经常使用的是前两种。 4. 传感器的原理结构和工作过程 4.1. 传感器的原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器,在轴

10、上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F 变换电路及信号输出电路。在传感器的外壳上固定着:激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 4.2. 传感器的工作过程 向传感器提供15V 电源,激磁电路中的晶体振荡器产生 400Hz 的方波,经过 TDA2030 功率放大器即产生交流激磁功率电源,通过能源环形变压器 T1 从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到5V 的直流电源,该电源做运算放大器

11、AD822的工作电源;由基准电源 AD589 与双运放 AD822 组成的高精度稳压电源产生4.5V 的精密直流电源,该电源既作为电桥电源,又作为放大器及 V/F 转换器的工作电源。当弹性轴受扭时,应变桥检测得到的 mV 级的应变信号通过仪表放大器 AD620 放大成 1.5v1v 的强信号,再通过 V/F 转换器 LM131 变换成频率信号,通过信号环形变压器 T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为 TTL 电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动-静环之间只有

12、零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 5. 传感器的应用 传感器的应用传感器的应用领域涉及机械制造、工业程控、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 5.1.专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 5.2.工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度

13、)的,以及传统的接近/定位传感器发展迅速。 5.3.通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 5.4.汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达 30 余种,多则达百种。 第二章 传感器在钢铁生产过程中的应用 下面我介绍下热电偶、射线、超声波传感器在钢铁生产过

14、程中的应用。 1. 热电偶传感器在钢铁生产过程中的应用 1.1.电热偶的概念 这就要从热电偶测温原理说起,热电是一种感温元件, 它把温度信号转换成热电动势信号, 通过电气仪表转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在 Seebeck 电动势热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在 0 时的条件下得到的,不同的热电偶具有不

15、同的分度表。在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。 1.2.电热偶的工作原理 热电偶传感器是钢铁生产过程中测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-501600进行连续测量,特殊的热电偶如金铁镍铬,最低可测到-269,钨铼最高可达 2800。比如两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电

16、位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为“热电偶”。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化 1时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在 540微伏之间。热电偶传感器有自己的优点和缺陷它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。 1.3.电热偶的优点 测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。测量范围广。常用的热电偶从-50+1600均可边续测量,某些特殊热

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号