姚新生有机波谱解析 第三章 核磁共振氢谱

上传人:飞*** 文档编号:48877643 上传时间:2018-07-21 格式:PPT 页数:155 大小:2.34MB
返回 下载 相关 举报
姚新生有机波谱解析 第三章 核磁共振氢谱_第1页
第1页 / 共155页
姚新生有机波谱解析 第三章 核磁共振氢谱_第2页
第2页 / 共155页
姚新生有机波谱解析 第三章 核磁共振氢谱_第3页
第3页 / 共155页
姚新生有机波谱解析 第三章 核磁共振氢谱_第4页
第4页 / 共155页
姚新生有机波谱解析 第三章 核磁共振氢谱_第5页
第5页 / 共155页
点击查看更多>>
资源描述

《姚新生有机波谱解析 第三章 核磁共振氢谱》由会员分享,可在线阅读,更多相关《姚新生有机波谱解析 第三章 核磁共振氢谱(155页珍藏版)》请在金锄头文库上搜索。

1、第三章 核磁共振波谱 3.1. 核磁基础 3.2 核磁共振氢谱 3.3 核磁共振碳谱 3.4 波谱解析本章主要内容1.基本原理:自旋,核磁矩,空间量子化,进动,核跃迁 2.化学位移:屏蔽效应,定义,影响因素,计算 3.自旋与自旋系统:分裂,命名,一级,二级谱简介 4.核磁共振氢谱解析方法与示例 5.核磁共振碳铺简介:PFT-NMR原理,常用碳谱的 类型和特征,碳谱的解析大致程序 核磁共振(Nuclear Magnetic Resonance,简写 为NMR)与紫外-可见、红外吸收光谱一样,本 质上都是微观粒子吸收电磁波后在不同能级上的 跃迁。 紫外和红外吸收光谱是分子吸收了波长为200 400

2、nm和2.525m的辐射后,分别引起分子中 电子能级和分子振转能级的跃迁。 核磁共振波谱是用波长很长(约1100 m)、 频率很小(兆赫数量级,射频区)、能量很低的 射频电磁波照射分子,这时不会引起分子的振动 或转动能级跃迁,更不会引起电子能级的跃迁, 但这种电磁波能与处在强磁场中的磁性原子核相 互作用,引起磁性的原子核在外磁场中发生核磁 能级的共振跃迁,而产生吸收信号。这种原子核 对射频电磁波辐射的吸收就称为核磁共振。 1946年哈佛大学的Purcell及斯坦福大学的Bloch 所领导的实验室几乎同时观察到核磁共振现象, 因此他们分享了1952年的诺贝尔物理奖。而自二 十世纪50年代出现第一

3、台核磁共振商品仪器以来 ,核磁共振波谱法在仪器、实验方法、理论和应 用等方面取得了飞跃式的进步。所应用的领域也 已从物理、化学逐步扩展到生物、制药、医学等 多个学科,在科研、生产和医疗中的地位也越来 越重要。 1.1 原子核的自旋 核磁共振的研究对象是具有自旋的原子 核。1924年Pauli预言,某些原子核具有自 旋的性质,尔后被证实除了一些原子核中 质子数和中子数均为偶数的核以外,其它 核都可以绕着某一个轴作自身旋转运动, 即核的自旋运动 1.1 原子核的自旋 自旋量子数 I 0的原子核有自旋现象和 自旋角动量。当 I= 时,核电荷呈球形分 布于核表面,它们的核磁共振现象较为简单 ,属于这一

4、类的主要原子核有1H1、15N7、 13C6、19F9、31P15。其中研究最多、应用最多 的是1H和13C核磁共振谱。 自旋角动量 一些原子核有自旋现象,因而具有自旋 角动量。由于核是带电粒子,故在自旋同时 将产生磁矩。核磁矩与角动量都是矢量,磁 矩的方向可用右手定则确定。 核的自旋角动量P是量子化的,不能任意 取数,并可用核的自旋量子数I表示。 自旋量子数不为零的原子核都有磁矩, 核磁矩的方向服从右手法则(如图7-2所示 ),其大小与自旋角动量成正比。 为核的磁旋比。是原子核的一种属性, 不同核有其特征的值。 例:H原子H=2.68108T-1S-1(特斯拉-1 秒-1) C13核的C =

5、6.73107 T-1S-1n代入上式得:n当I=0时,P=0,原子核没有自旋现象,只有I 0,原 子核才有自旋角动量和自旋现象n核的自旋角动量是量子化的,与核的自旋 量子数 I 的关系如下:二、核自旋能级和核磁共振(一)核自旋能级 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共有 2I+1个,各取向可用磁量子数m表示 m=I, I-1, I-2, -I 每种取向各对应一定能量状态 I=1/2的氢核只有两种取向 I=1的核在B0中有三种取向与外磁场平行,能量较低,m=+1/2, E 1/2= B0与外磁场方向相反, 能量较高, m= -1/2,

6、E -1/2=B0I=1/2的氢核 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为E=ZB0E 1/2= B0 E-1/2= B0I=1/2的核自旋能级裂分与B0的关系 由式 E = ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为E=E2E1= B0 (B0) = 2 B0 E与核磁矩及外磁场强度成正比, B0越大,能 级分裂越大, E越大无磁场B0外加磁场E1= B0E2= B0E=2 B0m= -1/2m= +1/2(二)核磁共振 如果以一定频率的电磁波照射处于磁场B0中的 核,且射频频率恰好满足下列关系时: h =E E=2 B0(核磁共振

7、条件式)n处于低能态的核将吸收射频能量而跃迁至高能 态,这种现象叫做核磁共振现象。I=1/2 的核发生核磁共振吸收射频 的频率,即共振频率。 自旋核的跃迁能量 磁性核h =E高能级低能级 (1)对自旋量子数I=1/2的同一核来说,, 因磁矩为一定值,为常数,所以发生共 振时,照射频率的大小取决于外磁场强度 的大小。外磁场强度增加时,为使核发生 共振,照射频率也相应增加;反之,则减 小。产生核磁共振光谱的条件 例:外磁场B0=4.69T(特斯拉,法定计量单位) 1H 的共振频率为 n放在外磁场 B0=2.35T =100MHz (2)对自旋量子数I=1/2的不同核来说,若同时 放入一固定磁场中,

8、共振频率取决于核本身磁矩 的大小, 大的核,发生共振所需的照射频率也大 ;反之,则小。例:13C的共振频率为: 原子核之经典力学模型 当带正电荷的、且具有自旋量子数的核 会产生磁场,该自旋磁场与外加磁场相互 作用,将会产生回旋,称为进动 (Procession),如下图。进动频率与自旋核 角速度及外加磁场的关系可用Larmor方程 表示: 在磁场中的进动核有两个相反方向的取向 ,可通过吸收或发射能量而发生翻转,见下 右图。 核在磁场中都将发生分裂,可以吸收一定频率 的辐射而发生能级跃迁。 两点说明 a) 并非所有的核都有自旋,或者说,并非所有 的核会在外加磁场中发生能级分裂! 当核的质子数Z和

9、中子数N均为偶数时,I=0或 P=0,该原子核将没有自旋现象发生。如12C, 16O,32S等核没有自旋。 b) 当Z和N均为奇数时,I=整数,P0,该类核 有自旋,但NMR复杂,通常不用于NMR分析。 如2H,14N等 c) 当Z和N互为奇偶时,I=半整数,P0,可以 用于NMR分析,如1H,13C。共振条件 原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场 ,如频率为f,当f等于进动频率,发生共振。低能态原子核吸收 交变电场的能量,跃迁到高能态,称核磁共振。 乙醇的高分辨1H NMR谱核的能级分布与驰豫 1.核能级分布平衡时能级分布满足波尔兹曼定律.通过计算处于低能级核数目仅比高

10、能级多百 万分之16 处于低能级的核数目仅比高能级的核数目 多出百万分之十六!当低能级的核吸收了射 频辐射后,被激发至高能态,同时给出共振 吸收信号。但随实验进行,只占微弱多数的 低能级核越来越少,最后高、低能级上的核 数目相等-饱和-从低到高与从高到低 能级的跃迁的数目相同-体系净吸收为0- 共振信号消失! 幸运的是,上述“饱和”情况并未发生!驰豫过程:由激发态恢复到平衡态的过程 处于高能态的核通过非辐射途径释放能 量而及时返回到低能态的过程称为弛豫。 由于弛豫现象的发生,使得处于低能态的 核数目总是维持多数,从而保证共振信号 不会中止。 弛豫可分为纵向弛豫和横向弛豫 。 纵向弛豫1:又称自

11、旋-晶格弛豫。处于高能级 的核将其能及时转移给周围分子骨架(晶格)中的 其它核,从而使自己返回到低能态的现象。 横向弛豫2:又称自旋-自旋弛豫。当两个相邻 的核处于不同能级,但进动频率相同时,高能级 核与低能级核通过自旋状态的交换而实现能量转 移所发生的弛豫现象。 思考下面问题: 我们知道,大多数有机物都含有氢原子(1H 核),从前述公式 可以看出,在B0一定的磁 场中,若分子中的所有1H都是一样的性质, 即H都相等,则共振频率0一致,这时只将 出现一个吸收峰 也就是说,无论这样的氢核处于分子的何 种位置或处于何种基团中,在核磁共振图谱 中,只产生一个共振吸收峰。 这样的图谱有意义吗? 事实上

12、,质子的共振频率不仅与B0有关,而且 与核的磁矩或 有关,而磁矩或 与质子在化合 物中所处的化学环境有关。 换句话说,处于不同化合物中的质子或同一化 合物中不同位置的质子,其共振吸收频率会稍有 不同,或者说产生了化学位移-通过测量或比 较质子的化学位移-了解分子结构-这使 NMR方法的存在有了意义。核磁共振波谱主要参数 用于结构分析的主要参数有化学位移,自旋偶合 常数,信号强度(峰面积)和驰豫时间. 一、化学位移 (一)屏蔽常数和化学位移 1H核的共振频率由外部磁场强度和核的磁矩表 示, 在B0=4.69的磁场中,其共振频率为200.15 MHz,即在核磁共振谱图上共振吸收峰为单峰。 实际上各

13、种化合物中的氢核的化学环境或结合情 况不同,所产生的共振吸收峰频率不同. 任何原子核都被电子云所包围,当1H核自旋时,核周 围的电子云也随之转动,在外磁场作用下,会感应产 生一个与外加磁场方向相反的次级磁场,实际上会使 外磁场减弱,这种对抗外磁场的作用称为屏蔽效应.n如图133所示。1H核由 于在化合物中所处的化学环 境不同,核外电子云的密度 也不同,受到的屏蔽作用的 大小亦不同,所以在同一磁 场强度B0 下,不同 1H核的 共振吸收峰频率不同。 原子实际上受到的磁场强度B等于外加磁 场强度B0 减去外围电子产生的次级磁场强度 (B0) B= B0-B0=B0(1-) 为屏蔽常数, B0为感应

14、产生的次级磁场 强度,B为氢核真正受到的有效外磁场强度 外电子云产生感应磁场,抵消一部分磁场,产 生共振向高场方向移动由于氢核具有不同的屏蔽常数,引起外磁场或 共振频率的移动,这种现象称为化学位移。固定 照射频率, 大的原子出现在高磁场处, 小的原子 出现在低磁场处核磁共振 屏蔽效应质子周围的电子云密度越高 ,屏蔽效应越大,即在较高的磁 场强度处发生核磁共振,反之, 屏蔽效应越小,即在较低的磁场 强度处发生核磁共振。 低场 H0 高场屏蔽效应小 屏蔽效应大大小核磁共振 屏蔽效应图7-6 甲醇(CH3-OH)的核磁共振谱化学位移二、化学位移(chemical shift)及其表示1. 化学位移在

15、相同条件下,处于不同化学环境下的有机化合物 中的质子,共振吸收频率不同的现象,称化学位移。2. 化学位移产生的原因质子周围的电子云的感应磁场:NS外加磁场H0H实 = H0-H0 = (1-)H0 :屏蔽常数3. 化学位移的表示相对表示法 存在问题:共振频率与外加磁场强度相关各种质子共振频率相差很小 解决办法:在测定样品中加一内标(TMS)TMS: Tetramethyl Silicon 化学位移表示:=v样 -v标 v0106 = 106 ppmH样 -H标 H0也可使用来表示化学位移:=10- 采用TMS作标样的优点:(1)所有H核化学位移相同;(2)电子云屏蔽作用大,峰出现在最高场;(3)稳定,溶解性好。 其它标样:(CH3)3COH, CH3CN, (CH3)2CO, DMSO(二 甲亚砜), 二氧六环, DSS( 4,4-二甲基-4-硅代戊 磺酸钠)例:右图为1,2,2-三氯 丙烷90MHz的NMR图 ,试计算每个峰的化 学位移值v =159.3Hzv =200.7Hz解:由化学位移的计算公式可得:12峰1:=106=2.23ppm200.7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号