非线性和非参数模型

上传人:宝路 文档编号:47999294 上传时间:2018-07-08 格式:PPT 页数:137 大小:985.14KB
返回 下载 相关 举报
非线性和非参数模型_第1页
第1页 / 共137页
非线性和非参数模型_第2页
第2页 / 共137页
非线性和非参数模型_第3页
第3页 / 共137页
非线性和非参数模型_第4页
第4页 / 共137页
非线性和非参数模型_第5页
第5页 / 共137页
点击查看更多>>
资源描述

《非线性和非参数模型》由会员分享,可在线阅读,更多相关《非线性和非参数模型(137页珍藏版)》请在金锄头文库上搜索。

1、第八讲 非线性和非参数计量经济学模型1 简单的非线性单方程计量经济模型 2 非线性模型的几个专门问题 3 非参数计量经济学模型1 简单的非线性单方程计量经济模型 一、非线性单方程计量经济学模型概述 二、非线性普通最小二乘估计 三、例题及讨论四、非线性单方程模型的最大似然估计说明 非线性计量经济学模型在计量经济学模型中占据 重要的位置 ;已经形成内容广泛的体系,包括变 量非线性模型、参数非线性模型、随机误差项违 背基本假设的非线性问题等; 非线性模型理论与方法已经形成了一个与线性模 型相对应的体系,包括从最小二乘原理出发的一 整套方法和从最大或然原理出发的一整套方法。 本节主要涉及最基础的、具有

2、广泛应用价值的非 线性单方程模型的最小二乘估计。一、非线性单方程计量经济学模型概述 解释变量非线性问题 现实经济现象中变量之间往往呈现非线性关系 需求量与价格之间的关系 成本与产量的关系税收与税率的关系基尼系数与经济发展水平的关系 通过变量置换就可以化为线性模型 可以化为线性的包含参数非线性的问题 函数变换 级数展开 不可以化为线性的包含参数非线性的问题 与上页的方程比较,哪种形式更合理? 直接作为非线性模型更合理。二、非线性普通最小二乘法 普通最小二乘原理 残差平方和 取极小值的 一阶条件 如何求解非 线性方程? 高斯牛顿(Gauss-Newton)迭代法 高斯牛顿迭代法的原理 对原始模型展

3、开台劳级数,取一阶近似值构造并估计线性伪模型构造线性模型估计得到参数的第1次迭代值迭代 高斯牛顿迭代法的步骤 牛顿拉夫森(Newton-Raphson)迭代法 牛顿拉夫森迭代法的原理 对残差平方和展开台劳级数,取二阶近似值; 对残差平方和的近似值求极值; 迭代。 与高斯牛顿迭代法的区别 直接对残差平方和展开台劳级数,而不是对其中的原 模型展开; 取二阶近似值,而不是取一阶近似值。应用中的一个困难 如何保证迭代所逼近的是总体极小值(即最小值) 而不是局部极小值? 一是模拟试验:随机产生初始值估计改变初始 值再估计反复试验,设定收敛标准(例如100 次连续估计结果相同)直到收敛。 一是利用检验统计

4、量进行检验。非线性普通最小二乘法在软件中的实现 给定初值 写出模型 估计模型 改变初值 反复估计三、例题与讨论例:农民收入影响因素分析模型 分析与建模:经过反复模拟,剔除从直观上看可 能对农民收入产生影响但实际上并不显著的变量 后,得到如下结论:改革开放以来,影响我国农 民收入总量水平的主要因素是从事非农产业的农 村劳动者人数、农副产品收购价格和农业生产的 发展规模。用I表示农民纯收入总量水平、Q表示 农业生产的发展规模、P表示农副产品收购价格 、L表示从事非农产业的农村劳动者人数。收入采 用当年价格;农业生产的发展规模以按可比价格 计算的、包括种植业、林业、牧业、副业和渔业 的农业总产值指数

5、为样本数据;农副产品收购价 格以价格指数为样本数据。 农农民收入及相关变变量数据年份I(10亿元)Q (1978=100)P (1978=100)L(100万人)197862.45100.0100.031.52197979.30107.5122.131.90198096.50109.0130.835.021981107.65115.3138.536.921982120.80128.4141.538.051983142.40138.4147.843.401984185.85155.4153.758.881985238.70160.7166.967.131986285.52166.1177.675

6、.221987343.80175.8198.981.301988442.60182.6244.686.111989495.30188.3281.384.981990524.66202.6274.086.741991559.30210.1268.489.061992613.66223.5277.597.651993743.49241.0314.7109.981994979.39261.7440.3119.6419951271.16290.2527.9127.0719961567.33317.5550.1130.2819971721.71333.7525.3135.27讨论:NLS的初值及影响 由

7、于农副产品收购价格和非农产业劳动者人数与 农业生产规模指数严重共线性,以农民收入为被 解释变量,农业生产规模指数为解释变量, 19781997年数据为样本。线性化估计收入年均增长19.1%,产值年均增长 6.5%,该参数估计结果基本合理。为什么如 此之高?能否将它 解释为“ 产值的收 入弹性? ”CPI人口非线性估计(初值:1 、5)迭代收 敛很快拟合效 果较差与线性估计结果偏离 大,经济意义不合理非线性估计(初值:0.001 、2)非线性估计(初值:0.1 、1)拟合结果实际观 测值线性拟 合值非线性 拟合值局部极小 拟合值讨论 一般情况下,线性化估计和非线性估计结果差异 不大。如果差异较大

8、,在确认非线性估计结果为 总体最小时,应该怀疑和检验线性模型。 非线性估计确实存在局部极小问题。 根据参数的经济意义和数值范围选取迭代初值。 NLS估计的异方差和序列相关问题。 NLS不能直接处理。 应用最大似然估计。四、非线性单方程模型的最大似然估计经典线性单方程模型的最大似然估计i=1,2,n 参数估计结果与参数的OLS估计相同简单非线性单方程模型的最大似然估计i=1,2,n 面临NLS同样的过程,得到相同的估计结果。2 非线性模型的几个专门问题一、一般非线性模型的最大似然估计 二、因变量的参数变换 三、异方差性的非线性方法 四、序列相关性的非线性方法 五、条件异方差性的非线性方法一、一般

9、非线性模型的最大似然估计1. 一般非线性模型的描述 以上是一般非线性模型的完整描述。随机项满足 经典假设 模型参数的一种估计方法是最小二乘法,即最小 化 模型参数的另一种估计方法是最大似然法。得 到广泛应用。 最大似然估计 yi的密度函数雅可比行列式 雅可比行列式正态分布密度函数 因变量样本的对数似然函数为: 很明显若没有雅可比行列式项,参数的非线性最 小二乘估计将是最大似然估计;然而,如果雅可比 行列式包括,最小二乘法不是最大似然法。 最大化对数似然函数的一阶条件为: 一般是得到中心化对数似然函数,然后最大化 如果变换的雅可比行列式是1,则不存在因变量 的参数变换;如果变换的雅可比行列式包含

10、,则 称为因变量的参数变换模型。 二、因变量的参数变换 Box-Cox变换 一种将变量之间的非线性关系变换为线性关系的 方法。 Box和Cox(1964)提出的变换关系:要求变量x为正值。取值可以是整个实数域但多数应用有 意义的取值范围为-2,2。 当=2,是二次变换;当=0.5,是平方根变换;当=1, 是线性变换;当=-1,是倒数变换;当=0,是对数变换。 例如: 如果已知被解释变量和解释变量各自进行何种的 B-C变换,可以先变换,然后估计线性模型。 一般情况下,何种未知,作为一组参数引入模型 ,对变换后的模型进行非线性模型估计,同时得 到和的估计量。 许多应用软件,例如GAUSS、SAS可

11、以实现。 这就引出了B-C变换的更重要的价值:如果不知 道被解释变量和解释变量之间存在何种形式的函 数关系,可以通过“B-C变换非线性模型估计”确 定函数关系。 Box-Cox非线性回归模型的参数估计 模型中被解释变量样本的对数似然函数为: 中心化对数似然函数: 响应系数和弹性系数为: 示例:假定被解释变量y与解释变量x和z之间的关系为:施加相同约束的估计结果真值:1=2,2=1,3=1, =1未施加相同约束的估计结果为什么 结果很 差?三、异方差性的非线性方法思路 将异方差问题看成一类非线性问题,采用NML估 计,比较简单,可以同时得到参数估计量和反映 异方差特征的量。 被解释变量样本的对数

12、似然函数为: 对异方差的结构给出假定,可以对模型的参数和 异方差的结构参数进行最大似然估计。 针对不同的问题假定不同的异方差结构;针对同 一个问题假定不同的异方差结构,进行估计和比 较。 典型的异方差结构及其对应的对数似然函数。 例题OLS 未考虑 异方差ML 未考虑 异方差0.183320.000015887 线性模型,截面样本,一般存在异方差。 采用非线性最大似然法估计,可以得到关于异方差 结构的估计结果。 在某些情况下,得到异方差结构的估计结果比模型 参数估计量更重要。 这就是异方差性的非线性方法的意义所在。四、序列相关性的非线性方法 首先假定模型随机误差项的序列相关结构。一般 以AR(

13、1)、MA(1)、ARMA(1,1)为常见。 求出随机误差项对被解释变量的偏导数表达式。 构造最大似然函数。 同时得到模型参数和随机误差项的序列相关结构 的估计结果。五、条件异方差性的非线性方法 ARCH Auto Regressive Conditional Hoteroskedasticity 条件异方差现象 通常横截面数据问题会产生异方差,而一般时间 序列问题没有异方差现象。 如果时间序列数据问题出现异方差,经常以条件 异方差形式。 所谓条件异方差,实际上是指“异方差”的“异”具 有序列相关性。 Engle于1982年分析英国通货膨胀率时首先发现 条件异方差现象。 被广泛应用于金融市场时

14、间序列分析。 Engle, R.F.:1982, Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of U.K. Inflation,“ Econometrica 50: 987-1008. The application in Engle(1982) involved macroeconomic series such as the inflation rate, but Engle quickly realized that the ARCH model was useful in f

15、inancial economics, as well. Risk evaluation is at the core of activities on financial markets. Investors assess expected returns of an asset against its risk. Banks and other financial institutions would like to ensure that the value of their assets does not fall below some minimum level that would

16、 expose the bank to insolvency. Such evaluations cannot be made without measuring the volatility of asset returns. Robert Engle developed improved methods for carrying out these kinds of evaluations.Percentage daily returns on an investment in the Standard GARCH is the model most often applied today. T

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号