计算方法-8

上传人:j****9 文档编号:47827637 上传时间:2018-07-05 格式:PDF 页数:154 大小:908.45KB
返回 下载 相关 举报
计算方法-8_第1页
第1页 / 共154页
计算方法-8_第2页
第2页 / 共154页
计算方法-8_第3页
第3页 / 共154页
计算方法-8_第4页
第4页 / 共154页
计算方法-8_第5页
第5页 / 共154页
点击查看更多>>
资源描述

《计算方法-8》由会员分享,可在线阅读,更多相关《计算方法-8(154页珍藏版)》请在金锄头文库上搜索。

1、数值计算方法O课程组庆学学与信息学学O|(肇院)O1 / 41:?多: 过给定节点的多;唯一5: 过n + 1个节点次不过n的?多唯一;Lagrange?多:pn(x) =Pn i=0yiLi(x) =Pn i=0yinQj=0 j,ix xj xi xj:fx0,x1, ,xk =fx1,x2, ,xk fx0,x1, ,xk1 xk x0,其fxi = f(xi);表: 略Newton?多:pn(x) =nPi=0fx0,x1, ,xi (x x0)(x x1)(x xi1).O|(肇院)O2 / 411八讲Hermite?值式O|(肇院)O3 / 4181Hermite?Hermite?

2、多 n次Hermite?2n次样条?背景 n次样条?的概g n弯矩3本?结O|(肇院)O4 / 411Hermite?Hermite?多 n次Hermite?2n次样条?3本?结O|(肇院)O5 / 41插例子例 以-2和1为?节点(=给定点(2,4)和(1,1),构E函x2的?多 ,d此0.82和0.92的近q.)N易构E?多p1(x) = 2 xuk0.82 p1(0.8) = 2 0.8 = 1.2,0.92 p1(0.9) = 2 0.9 = 1.1姑 不论们的误 大?,就其近q0.82 0.92S不 的.O|(肇院)O5 / 41插例子例 以-2和1为?节点(=给定点(2,4)和(1

3、,1),构E函x2的?多 ,d此0.82和0.92的近q.)N易构E?多p1(x) = 2 xuk0.82 p1(0.8) = 2 0.8 = 1.2,0.92 p1(0.9) = 2 0.9 = 1.1姑 不论们的误 大?,就其近q0.82 0.92S不 的.O|(肇院)O5 / 41插例子例 以-2和1为?节点(=给定点(2,4)和(1,1),构E函x2的?多 ,d此0.82和0.92的近q.)N易构E?多p1(x) = 2 xuk0.82 p1(0.8) = 2 0.8 = 1.2,0.92 p1(0.9) = 2 0.9 = 1.1姑 不论们的误 大?,就其近q0.82 0.92S不

4、的.O|(肇院)O5 / 41?因3u: x23x 0单调递O的, ?多p1(x) = 2 x%单调递的.一地,对u?多,不论其表y为Lagrange.还Newton.,?条都保y了被?函3?节点处得 同的函,并不U保y们3 点k同的O变化.以,k必要讨论3?节点处也给定导的?多.O|(肇院)O6 / 41?因3u: x23x 0单调递O的, ?多p1(x) = 2 x%单调递的.一地,对u?多,不论其表y为Lagrange.还Newton.,?条都保y了被?函3?节点处得 同的函,并不U保y们3 点k同的O变化.以,k必要讨论3?节点处也给定导的?多.O|(肇院)O6 / 41?因3u: x

5、23x 0单调递O的, ?多p1(x) = 2 x%单调递的.一地,对u?多,不论其表y为Lagrange.还Newton.,?条都保y了被?函3?节点处得 同的函,并不U保y们3 点k同的O变化.以,k必要讨论3?节点处也给定导的?多.O|(肇院)O6 / 41Hermite插5-4 已函f(x)3k + 1个互异节点xi(i = 0,1, ,k)处的函f(xi) 和到mi阶的导f(j)(xi) (j = 1, ,mi).e存3次不过n的多 pn(x),满vp(j)n(xi) = f(j)(xi), j = 0,1, ,mi; i = 0,1, ,kKpn(x)为f(x)的Hermite?(

6、Hermite Interpolation Poly -nomial).待定X也一解,但对具体问题还不同的 解.O|(肇院)O7 / 41Hermite插5-4 已函f(x)3k + 1个互异节点xi(i = 0,1, ,k)处的函f(xi) 和到mi阶的导f(j)(xi) (j = 1, ,mi).e存3次不过n的多 pn(x),满vp(j)n(xi) = f(j)(xi), j = 0,1, ,mi; i = 0,1, ,kKpn(x)为f(x)的Hermite?(Hermite Interpolation Poly -nomial).待定X也一解,但对具体问题还不同的 解.O|(肇院)O

7、7 / 41例例5-3 已f(1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermite?多.)d?条p3(1) = 3, p03(1) = 5和p00 3(1) = 2,f(x)3x = 1 处的2阶Taylor为T2(x) = f(1) + f0(1)(x 1) +f00(1) 2(x 1)2= 3 + 5(x 1) (x 1)2已满v3x = 1点的k条.3次?多为p3(x) = T2(x) + c(x 1)3= 3 + 5(x 1) (x 1)2+ c(x 1)3其Xc待定.w,p3(x)也满v3x = 1点的k?条.2 dp3(2) = 4解得

8、c = 3.故Hermite?多为p3(x) = 3 + 5(x 1) (x 1)2 3(x 1)3O|(肇院)O8 / 41例例5-3 已f(1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermite?多.)d?条p3(1) = 3, p03(1) = 5和p00 3(1) = 2,f(x)3x = 1 处的2阶Taylor为T2(x) = f(1) + f0(1)(x 1) +f00(1) 2(x 1)2= 3 + 5(x 1) (x 1)2已满v3x = 1点的k条.3次?多为p3(x) = T2(x) + c(x 1)3= 3 + 5(x 1)

9、(x 1)2+ c(x 1)3其Xc待定.w,p3(x)也满v3x = 1点的k?条.2 dp3(2) = 4解得c = 3.故Hermite?多为p3(x) = 3 + 5(x 1) (x 1)2 3(x 1)3O|(肇院)O8 / 41例例5-3 已f(1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermite?多.)d?条p3(1) = 3, p03(1) = 5和p00 3(1) = 2,f(x)3x = 1 处的2阶Taylor为T2(x) = f(1) + f0(1)(x 1) +f00(1) 2(x 1)2= 3 + 5(x 1) (x 1

10、)2已满v3x = 1点的k条.3次?多为p3(x) = T2(x) + c(x 1)3= 3 + 5(x 1) (x 1)2+ c(x 1)3其Xc待定.w,p3(x)也满v3x = 1点的k?条.2 dp3(2) = 4解得c = 3.故Hermite?多为p3(x) = 3 + 5(x 1) (x 1)2 3(x 1)3O|(肇院)O8 / 41例例5-3 已f(1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermite?多.)d?条p3(1) = 3, p03(1) = 5和p00 3(1) = 2,f(x)3x = 1 处的2阶Taylor为T

11、2(x) = f(1) + f0(1)(x 1) +f00(1) 2(x 1)2= 3 + 5(x 1) (x 1)2已满v3x = 1点的k条.3次?多为p3(x) = T2(x) + c(x 1)3= 3 + 5(x 1) (x 1)2+ c(x 1)3其Xc待定.w,p3(x)也满v3x = 1点的k?条.2 dp3(2) = 4解得c = 3.故Hermite?多为p3(x) = 3 + 5(x 1) (x 1)2 3(x 1)3O|(肇院)O8 / 41例例5-3 已f(1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermite?多.)d?条p

12、3(1) = 3, p03(1) = 5和p00 3(1) = 2,f(x)3x = 1 处的2阶Taylor为T2(x) = f(1) + f0(1)(x 1) +f00(1) 2(x 1)2= 3 + 5(x 1) (x 1)2已满v3x = 1点的k条.3次?多为p3(x) = T2(x) + c(x 1)3= 3 + 5(x 1) (x 1)2+ c(x 1)3其Xc待定.w,p3(x)也满v3x = 1点的k?条.2 dp3(2) = 4解得c = 3.故Hermite?多为p3(x) = 3 + 5(x 1) (x 1)2 3(x 1)3O|(肇院)O8 / 41例例5-3 已f(

13、1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermite?多.)d?条p3(1) = 3, p03(1) = 5和p00 3(1) = 2,f(x)3x = 1 处的2阶Taylor为T2(x) = f(1) + f0(1)(x 1) +f00(1) 2(x 1)2= 3 + 5(x 1) (x 1)2已满v3x = 1点的k条.3次?多为p3(x) = T2(x) + c(x 1)3= 3 + 5(x 1) (x 1)2+ c(x 1)3其Xc待定.w,p3(x)也满v3x = 1点的k?条.2 dp3(2) = 4解得c = 3.故Hermite?多为p3(x) = 3 + 5(x 1) (x 1)2 3(x 1)3O|(肇院)O8 / 41例例5-3 已f(1) = 3, f0(1) = 5, f00(1) = 2, f(2) = 4,3次Hermit

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 初中教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号