我的--高铁路基沉降观测方案

上传人:n**** 文档编号:45964599 上传时间:2018-06-20 格式:DOC 页数:66 大小:1.51MB
返回 下载 相关 举报
我的--高铁路基沉降观测方案_第1页
第1页 / 共66页
我的--高铁路基沉降观测方案_第2页
第2页 / 共66页
我的--高铁路基沉降观测方案_第3页
第3页 / 共66页
我的--高铁路基沉降观测方案_第4页
第4页 / 共66页
我的--高铁路基沉降观测方案_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《我的--高铁路基沉降观测方案》由会员分享,可在线阅读,更多相关《我的--高铁路基沉降观测方案(66页珍藏版)》请在金锄头文库上搜索。

1、辽宁工程技术大学毕业设计(论文)1引言自1825年世界上第一条铁路诞生以来,世界各国重视铁路研究工作的专家、学者,始终在为提高列车的行车速度作不懈的努力。在我国铁路“十五计划”编制中已明确指出,要加强快速客运专线的建设,逐步建成以北京、上海、广州为中心,连接各省会城市和其它大型城市间铁路快速客运系统。高速铁路对轨道的平顺性提出了更高的要求,而路基是铁路线路工程的一个重要组成部分,是承受轨道结构重量和列车荷载的基础,它也是线路工程中最薄弱最不稳定的环节,路基几何尺寸的不平顺,自然会引起轨道的几何不平顺,因此需要轨下基础有较高的稳定性和较小的永久变形,以确保列车高速、安全、平稳运行。从德、法、日三

2、国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零。工后沉降的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国从很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了相关设计暂行规定和设计指南,初步形成了具有中国特色的高速铁路技术体系,建设世界一流水平的高速铁路。2005年1月5日,国务院批准了铁路中长期发展规划,从此拉开了高速铁路建设的序幕。本设计是根据铁道部建设司 2006 年 4 月 10 日下发的关于尽快开展无碴轨道铺设条件评估技术指南编写工

3、作的通知1的要求和客运专线无碴轨道铁路工程测量技术暂行规定2中对线下构筑物的变形测量提出的相关规定,借鉴国外高速铁路无碴轨道铺设条件的相关评估技术要求,进行编制的。陈亮:高铁路基工程变形观测方案设计与实施21 哈大客运专线四平段概述1.1 工程概况哈大铁路客运专线被列为我国“十一五”期间东北地区铁路建设重点工程,是我国中长期铁路网规划 “四纵四横”客运专线网中“北京沈阳哈尔滨(大连) ”客运专线的重要组成部分,全长约 900 公里。中铁十九局集团哈大客运专线管段位于吉林省四平市境内,为新建铁路哈尔滨至大连客运专线站前土建工程标DK579+140DK602+407.3 段工程,线路全长 23.2

4、667km,其中桥梁长 13.77807km,占59.22%,路基长 9.48923 km,占 40.78%。工程投资 6.86 亿元。路堤结构形式为级配碎石,中粗砂、AB 组填料、改良土,地基采用 CFG 桩或水泥搅拌桩进行处理。沉降和变形观测里程起始于 DK579+140,终止于 DK602+407.3,其中包括八棵树大桥、三叉河大桥、英城大桥、龙王庙大桥等 10 座大桥,DK597+224、DK597+713、DK598+250 等 10 个涵洞和靠山屯八棵树路基、八棵树三岔河路基等 10 段路基。1.2 作业区自然状况1.2.1 地形、地貌本区段可分为三大地貌单元,即起点到 DK579

5、+333 为属低山缓丘区,地势起伏较大,地势总体北高南低,北部有一陡坎,高差约 13m;向北为微丘状剥蚀平原区。该段地势上形成中部高南北低,东西向较为平坦,地形纵向起伏较大;DK600+400DK602+407.3位于苏台河一、二级阶地,地势平坦、开阔,相对高差 012.14m。1.2.2 工程地质及水文地质概况1)工程地质概况本区段地层主要为第四系全新统冲积、残积粉质黏土层,厚 115m,坚硬-硬塑,局部软塑。中更新统黏质黄土厚 120m,硬塑,粉质黏土呈层状分布于黏质黄土层下部,厚度 26m。底部为白垩系泥岩,风化层厚 1030m。部分地段见第三系富峰山期玄武岩、石灰系大理岩。沿线存在季节

6、性冻害问题,白垩系泥岩及泥岩夹砂岩,抗风化能力差、强度低、易崩解、属极软岩,具膨胀性。沿线露出的第四系中更新统黏质黄土、全新统残积粉质黏土都含有亲水性黏土矿物,具有弱-中等膨胀性。2)水文地质概况辽宁工程技术大学毕业设计(论文)3沿线地下水主要为第四系松散堆积层孔隙潜水,其补给来源主要为大气降水、河水、人工地表水垂直入渗。第四系孔隙潜水广泛分布于河流漫滩及阶地的砂砾石层中,漫滩及一级阶地地下水位较浅,一般为 110m ,二级阶地为 520m;黄土台地地下水位差异较大,孔隙水附存于黏质黄土及砂砾石透镜体中,埋深 320m ,局部可达 30m 以上。基岩裂隙水主要分布于剥蚀微丘地带,该地区岩层的构

7、造裂隙及风化裂隙发育,为地下水的储存创造了条件,地下水主要受大气降水补给,一般埋藏深度大于 10m,随季节变化明显,年水位变化幅度为 25m。沿线部分地段地表水和地下水对混凝土结构具有侵蚀性,以硫酸侵蚀、二氧化碳侵蚀为主,环境作用等级一般为 H1。1.2.3 气象特征本区段属于中温带亚湿润气候区,年平均气压 995.9mb;年平均气温 6.7,极端最高气温 37.3,极端最低气温-34.6;年平均绝对湿度 9.0mb,日最大绝对湿度 34.5mb,日最小绝对湿度 3mb;年平均降水量 632.7mm,年最大降水量 778.3mm,年最小降水量448.1mm,年平均蒸发量 1226.0mm,年最

8、大蒸发量 1392.0mm,平均风速 2.8m/s(主导风向 SW) ,最大定时风速 20m/s(主导风向 SW) ,年最大积雪深度 22cm;最大冻结深度148cm。1.2.4 地震动参数据中华人民共和国国家标准 GB18306-2001中国地震动参数区划图的划分、 铁路工程抗震设计规范 (GB50111-2006)的有关规定,结合本段工程地质与水文地质条件及工程设置的实际情况,本区段地震动峰值加速度值采用 0.05g,相当于地震基本烈度六度,地震动反应谱特征周期采用 0.35s。1.2.5 地层岩性及地质构造1)地层岩性本区段自上而下地层为第四系全新统残积粉质黏土、白垩系下统泥岩夹砂岩。工

9、程地质特性描述如下:第四系全新统:粉质黏土(Q4el) ,呈层状分布于地表,浅灰色灰黄色,硬塑为主,级普通土 o=150KPa。白垩系下统:泥岩夹砂岩(K1Ms+Ss) ,泥岩为主,夹有薄层砂岩。泥岩紫红色,含少量砂砾,泥质结构,层理构造,可见结核,成岩较差,风化产物为土状。砂岩以灰色、紫红色为主,钙质胶结,成岩较差,风化产物为砂状,岩层走向 NE,倾向 WN,倾角小陈亮:高铁路基工程变形观测方案设计与实施4于 5,o=200400KPa。泥岩具弱膨胀性。2)地质构造本区段构造单元属黑褶皱系,位于新华夏系第二隆起带(张广岭隆起带)西缘与第二沉降带东部(松辽平原)两个一级构造单元的衔接复合部位,

10、第三纪以来以下沉坳陷为主,但不同地区的沉降幅度具有明显的差异。1.3 国内外高速铁路发展现状自1925年世界上第一条铁路诞生以来,世界各国重视铁路研究工作的专家、学者始终在为提高列车的行车速度作不懈的努力。高速铁路的实际应用发源于日本,自1964年日本建成第一条高速铁路后,铁路焕发了新的生机,进入二十世纪90年代,世界上掀起了高速铁路建设热潮,日本、法国、德国、意大利、西班牙等多个国家相继发展了高速铁路。1964年10月1日,日本东海道新干线正式开通营业,全长515公里,高速列车运行速度达到210公里1小时。这条专门用于客运的电气化、标准轨距的双线铁路,代表了当时世界第一流的铁路高速技术水平,

11、并标志着世界高速铁路由试验阶段跨入了商业运营阶段。第一条高速铁路的问世,使一度被人们认为“夕阳产业”的铁路,出现了生机,显示出强大生命力,预示着“铁路第二个大时代”的来临。高速铁路发展是长期努力的结果,高速铁路技术不是一项过时和停滞的技术,而是在不断发展和创新。高速铁路集中反映了当代新型牵引动力、高性能轻型车辆、高质量线路、高速运行指标、高速运输组织和经营管理方面的技术进步,代表了铁路技术的最高成就,是当代技术进步的结晶。我国在国民经济和社会发展“九五”规划和2010年远景目标纲要中,给出了中国高速铁路发展战略:坚持高起点、高标准,坚持可持续发展,坚持广泛吸收引进国际先进成熟技术与自主研发、创

12、新相结合,博采众长,系统集成,走跨越式发展道路,形成具有中国特色的高速铁路技术体系,建设世界一流水平的高速铁路。2005年1月5日,国务院批准了铁路中长期发展规划,从此拉开了高速铁路建设的序幕。1.4 沉降和变形观测的目的客运专线无碴轨道对路基的工后沉降要求严格、标准高,设计中对土质路基基础和过渡段形式等均进行了沉降变形计算,采取了相应的设计措施。而影响沉降计算的因素较多,沉降计算的精度不足以控制无碴轨道工后沉降。施工期必须按设计要求进行系统的沉降变形动态观测。通过对沉降观测数据系统综合分析评估,验证或调整设计措施,辽宁工程技术大学毕业设计(论文)5使路基达到规定的变形控制要求。分析、推算出最

13、终沉降量和工后沉降,合理确定无碴轨道开始铺设时间,确保客运专线无碴轨道结构铺设质量。2 沉降观测的内容及要求2.1 沉降观测的内容2.1.1 路基1)路堤:根据不同的路基高度和地基条件,路基沉降观测的主要内容有:路基面的沉降观测;路基基底沉降观测;路基两侧路肩的沉降观测;路基两侧坡脚的沉降观测。2)路堑:根据不同的路基高度和地基条件,路基沉降观测的主要内容有:路基面的沉降观测;路基基底沉降观测;路基两侧路肩的沉降观测。2.1.2 过渡段根据过渡段的设计形式,沉降观测的主要内容有:路桥过渡段沉降观测;路堤与涵洞过渡段沉降观测;路堤与路堑过渡段沉降观测。2.2 沉降观测的控制要求高速铁路路基作为无

14、碴轨道结构的基础,对路基的沉降变形非常敏感,要求沉降控制在非常小的范围之内。工后沉降指的是路基上部关键部位竣工验收后整个构筑物体系所产生的沉降量,是路基沉降的主要控制对象。我国拟建的高速铁路无碴轨道在汲取国外沉降控制经验的基础上,围绕线路运营、结构允许变形,从路基竣工后扣件可调整的总沉降量,20m结构长度范围内的不均匀沉降、路基与桥涵之间差异沉降形成的错台,以及轨道结构单元之间形成的折角等多方面对路基变形都作出了严格规定,见表2-1。表 2-1 高速铁路无碴轨道路基工后沉降控制标准Tab.2-1 High-speed railway track settlement after ballast

15、 control standards一般情况允许工后沉降均匀地基长20m允许工后沉降不均匀沉降差异沉降错台折角15mm30mm20mm/20m5mm1/1000无碴轨道的工后沉降控制值,应从满足扣件可调整量、线路舒适运营、上部结构允许变形以及工程的长期稳定性综合考虑确定,以满足无碴轨道结构形式的要求。根据德国铁路技术规范规定,对于调高量为30mm的扣件,在施工中允许调高+6mm和-4mm,那陈亮:高铁路基工程变形观测方案设计与实施6么只剩20mm可以调整,再考虑运营期轨道结构变形要留有5mm的余量,实际上可以用于路基沉降调整的仅有15mm,路基的沉降不大于15mm才能保证设计的轨道高程,这可是

16、局部调整的极限。对于20m范围内路基的均匀沉降,德国规范的规定可以到20mm,对于更大范围的情况,规定为扣件可调整范围的2倍,即30mm。由于在不同结构物的连接处的差异沉降有时是不可避免的,在轨道结构中采用特殊的过渡措施可以承受5mm的差异沉降,因此规定工后的差异沉降小于5mm。对于路桥、路涵等过渡段沉降造成的折角,日本新干线板式轨道线路规定不大于1/1000,德国无碴轨道技术标准规定不大于1/500,我国首次在路基上铺设无碴轨道,对铺轨工程完成后由于过渡段沉降而造成的折角,采用不大于1/1000来控制。辽宁工程技术大学毕业设计(论文)73 观测点布置3.1 路堤和路堑观测断面和观测点的布置原则3.1.1 路堤一般情况下沿线路方向间隔不大于 50m 布设一个观测断面,地基条件复杂、地形起伏大应适当加密,25m 布设一个断面。一个沉降观测单元(连续路基沉降观测区段为一个单元)应不少于 2 个观测断面。堆载预压时每个路堤观测断面应布设一组组合式沉降板,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 公路与桥梁

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号