激光焊接机的使用与维护

上传人:j****9 文档编号:45526461 上传时间:2018-06-17 格式:DOC 页数:11 大小:57.50KB
返回 下载 相关 举报
激光焊接机的使用与维护_第1页
第1页 / 共11页
激光焊接机的使用与维护_第2页
第2页 / 共11页
激光焊接机的使用与维护_第3页
第3页 / 共11页
激光焊接机的使用与维护_第4页
第4页 / 共11页
激光焊接机的使用与维护_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《激光焊接机的使用与维护》由会员分享,可在线阅读,更多相关《激光焊接机的使用与维护(11页珍藏版)》请在金锄头文库上搜索。

1、AHL-W180IV 大型模具激光焊机大型模具激光焊机是奥华公司第四代修模激光设备。主要用于大中型模具修补。产品多次出口日本、韩国,是国内大型企业的首选产品。主要功能与优点世界先进技术实力:奥华激光是国内首家推出激光模具修补设备的专业研发、生产和销售商,研发人员来自国家重点激光研究所的专家和负责人。关键部件采用国外进口配置优化组合,部分性能世界领先、综合性价比、适用性全球最优,产品多次出口日本、欧洲等发达国家。客户重复购买率全球最优。最广泛的用户基础:奥华激光凭借其完善成熟技术,超前的世界品质,占据中国模具补焊市场的 80%,并且大批量出口日本,欧洲。奥华激光焊机已成高品质要求焊接的首选机型。

2、采用改进型内置工控微机进行双闭环精密控制,其稳定性和运行能力远远优于单片机控制。激光控制系统对激光电源波形进行精密控制,系统对不同材质预置了优化波形值。只要选择对应的材质,就能焊出最好的效果工控微机气体保护系统:可改为微机控制的同步氩气保护系统,使氩气 保护更好,焊接效果更加牢固,美观。可以最大限度地节约氩气。观察系统:配带十字光标的专用显微镜观察系统。带有高速电子滤光保护装置,保护作 业者眼睛不被激光伤害。主要应用行业主要用于 S136,SKD -11,NAK80,8407,718,738,H13,P20,W302,2344 等模具钢、碳钢、普通合金钢、不锈钢、铍铜、紫铜和极硬合金材料的塑胶

3、模具、铸造模、锻造模、冲压模、压铸模等。普遍应用于手机、数码产品、汽 车及摩托车等模具制造和成型行业。技术参数最大激光功率:180W激光波长:1064nm单脉冲最大能量:110J激光焊接深度:0.1 - 3.5mm脉冲宽度:0.3 - 20ms连击时激光焊接频率:0.5 - 40Hz光斑尺寸可调范围:0.2-2mm激光焊丝:0.2- 0.8 mm整机耗电功率:11KW电力需求:220V(380V)10%/50Hz/40A标配工作台:三维、上下电动瞄准定位:显微镜激光器上下行程:300mm激光器轴向旋转:360 度 激光器水平方向:Y 轴可移动系统组成及环境要求系统组成系统组成:光路、冷水箱、控

4、制柜、工作台,可选配万向夹具耗材耗材:氙灯、滤芯、焊丝、保护镜片、氩气、水、电安装环境安装环境:安装地点:6 平方米以上。环境:干净无灰尘或灰尘较少 。 温度:55F(13C)to 82F (28C) 湿度: 5% to 75% 不结露。电源:220V 50HZ 交流电,40 安 空气开关, 电压稳定。AHL-W180IV 模具激光焊机模具激光焊机是奥华公司第四代修模激光设备。激光器上下、左右、前后可电动操作,工作台上下可电动操作,主要用于特、大、中型模具修补。主要用于 S136,SKD -11,NAK80,8407,718,738,H13,P20,W302,2344 等模具钢、碳钢、普通合金

5、钢、不锈钢、铍铜、紫铜和极硬合金材料的塑胶模具、铸造模、锻造模、冲压模、压铸模等。普遍应用于手机、数码产品、汽车及摩托车等模具制造和成型行业。激光模具烧焊机(手动激光焊接机)是通过激光瞬间产生的高热能将专用焊丝熔接到模具的破损部位,与原有基材牢固熔接,焊后经电火花,磨削等加工成光面,从而修补模具。对模具砂眼、裂痕、崩角、及磨损等微小部位进行精密修补。热影响区域小,不会导致精密模具变形。焊接深度大,焊接牢固。溶化充分,不留修补痕迹。溶池溶料凸起部份与基体结合处无凹陷现象。激光焊接技术概要激光焊接技术概要激光焊接是激光加工材料加工技术应用的重要方面之一。70 年代主要用于焊接薄壁材料和低速焊接,焊

6、接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率 CO2 和高功率的 YAG 激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于 C02 激光和 YAG 激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺

7、陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。显示在不同的辐射功率密度下熔化过程的演变阶段,激光焊接的机理有两种:1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面

8、时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在起。这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互

9、转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。目前激光焊应用领域的扩大,主要应用于:制造业应用、粉末冶金领域、汽车工业、电子工业、生物医学、其他领域如对 BT20 钛合金、HEl30 合金、Li-ion 电池等激光焊接。 激光焊接的特点是被焊接工件变形极小,几乎没有连接间隙,焊接深度/宽度比高,因此焊接质量比传统焊接方法高。但是,如向保证激光焊接的质量,也就是激光焊接过程监测与质量控制是一个

10、激光利用领域的重要内容,包括利用电感、电容、声波、光电等各种传感器,通过电子计算机处理,针对不同焊接对象和要求,实现诸如焊缝跟踪、缺陷检测、焊缝质量监测等项目,通过反馈控制调节焊接工艺参数,从而实现自动化激光焊接。 在激光焊接中,光束焦点位置是最关键的控制工艺参数之一,在一定激光功率和焊接速度下,只有焦点处于最佳位置范围内才能获得最大熔深和好的焊缝形状。在实际激光焊接中,为了避免和减少影响焦点位置稳定性的因素,需要专门的夹紧和设备技术,这种设备的精确程度与激光焊接的质量高低是相辅相成的。 一、激光焊接的主要特性。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。2、

11、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达 5:1,最高可达 10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来, 在 YAG 激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推

12、广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。 激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表

13、现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。 三、激光焊接的工艺参数。 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,

14、功率密度在范围在 104106W/CM2。 2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有 6098%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与

15、负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热 50200us 材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。激光点焊技术浅析激光点焊技术浅析目前生产中

16、所使用的点焊方式大多为电阻点焊,它易于实现自动化和机械化,生产效率高。但是也存在很多问题,比如无损检测困难,接头强度低等。随着各种焊接方式的不断产生和发展,点焊方式也呈现多样化。目前已经应用于生产的就有电阻点焊、电弧点焊、激光点焊和胶接点焊等多种点焊方法 。 激光点焊作为一种新的点焊方式,与传统的电阻点焊相比具有其特有的优势。由于采用激光作热源,点焊速度快、精度高,热输入量小,工件变形小;激光的可达性较好,可以减少点焊时位置与结构上的限制;激光点焊属于无接触焊接,焊点之间的距离、搭接量等参数的调节范围大;不需要大量的辅助设备,能够较快的适应产品变化,满足市场需求。激光点焊所具有的高精度、高柔性的特点使其在实际生产,特别是航空工业的应用中能够取代传统的电阻点焊和铆接等工艺。 目前激光点焊技术多应用在大批量自动化生产的微小元件的组焊中,采用高频率、低功率的脉冲激光器,所得焊点热影响区小,焊点无污染,焊接质量高。 激光焊点分析: 激光焊点表面存在金属堆积,焊点中心则呈现不同程度的下塌,这主要是由于金属来不及回填产生的。当激光功率达到一定值时,熔池中的液态金属急剧蒸发形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 初中教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号