铸铁热处理46618

上传人:腾**** 文档编号:40337451 上传时间:2018-05-25 格式:DOC 页数:14 大小:320.50KB
返回 下载 相关 举报
铸铁热处理46618_第1页
第1页 / 共14页
铸铁热处理46618_第2页
第2页 / 共14页
铸铁热处理46618_第3页
第3页 / 共14页
铸铁热处理46618_第4页
第4页 / 共14页
铸铁热处理46618_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《铸铁热处理46618》由会员分享,可在线阅读,更多相关《铸铁热处理46618(14页珍藏版)》请在金锄头文库上搜索。

1、铸铁的热处理铸铁的热处理资讯来源: 环球铸造网 发布时间:2010-04-13 15:28:10按工艺目的不同,铸铁热处理主要可以分为以下几种:(1)去应力退火热处理; (2) 石墨化热处理;(3) 改变基体组织热处理。本章简要介绍上述热处理工艺的理论基础和工艺特点。第一节 去应力退火热处理去应力退火就是将铸件在一定的温度下保温,然后缓慢冷却,以消除铸件中的铸造 残留应力。对于灰口铸铁,去应力退火可以稳定铸件几何尺寸,减小切削加工后的变形。 对于白口铸铁,去应力退火可以避免铸件在存放、运输和使用过程中受到振动或环境发 生变化时产生变形甚至自行开裂。一、铸造残留应力的产生铸件在凝固和以后的冷却过

2、程中要发生体积收缩或膨胀,这种体积变化往往受 到外界和铸件各部分之间的约束而不能自由地进行,于是便产生了铸造应力。如果产生 应力的原因消除后,铸造应力随之消除,这种应力叫做临时铸造应力。如果产生应力的 原因消除后铸造应力仍然存在,这种应力叫做铸造残留应力。铸件在凝固和随后的冷却过程中,由于壁厚不同,冷却条件不同,其各部分的 温度和相变程度都会有所不同,因而造成铸件各部分体积变化量不同。如果此时铸造合 金已经处于弹性状态,铸件各部分之间便会产生相互制约。铸造残留应力往往是这种由 于温度不同和相变程度不同而产生的应力。二、去应力退火的理论基础研究表明,铸造残留应力与铸件冷却过程中各部分的温差及铸造

3、合金的弹性模 量成正比。过去很长的时期里,人们认为铸造合金在冷却过程中存在着弹塑性转变温度, 并认为铸铁的弹塑性转变温度为 400左右。基于这种认识,去应力退火的加热温度应 是 400。但是,实践证明这个加热温度并不理想。近期的研究表明,合金材料不存在 弹塑性转变温度,即使处于固液共存状态的合金仍具有弹性。为了正确选择去应力退火的加热温度,首先让我们看看铸铁在冷却过程中应力 的变化情况。图 1 是用应力框测定的灰铸铁冷却过程中粗杆内应力的变化曲线。在 a 点前灰铸铁细杆已凝固完毕,粗杆处于共晶转变期,粗杆石墨化所产生的膨胀受到细杆的阻碍,产生压 应力,到达 a 点时,粗杆的共晶转变结束,应力达

4、到极大值。从 a 点开始,粗杆冷却速度超过细杆,二者温差逐渐减小,应力随之减小,到达 b 点时应力降为零。 此后由于粗杆的线收缩仍然大于细杆,加上细杆进入共析转变后石墨析出引起的膨胀,粗杆中的应力转变为 拉应力。到达 c 点时粗杆共析转变开始,细杆共析转变结束,两杆温差再次增大,粗杆受到的拉应力减小。到达 d 点时,粗杆受到的拉应力降为零,粗杆所受到的应力又开始转变为压应力。从 e 点开始,粗杆的冷却速度再次大于细杆,两杆的温差再次减小,粗杆受到的压应力开始减小。到达 f 点时,应力再度为零。此时两杆仍然存在温差,粗杆的收缩速度仍然大于细杆,在随后的冷 却过程中,粗杆所受到的拉应力继续增大。从

5、上述分析可以看出,灰铸铁在冷却过程中有三次完全卸载(即应力等于零)状态。如果在其最后 一次完全卸载(即 f 点)时,对铸件保温,消除两杆的温差,然后使其缓慢冷却,就会使两杆间的应力降到 最小。对灰铸铁冷却过程中的应力测定表明,灰铸铁最后一次完全卸载温度在 550600。这与实际生产中 灰铸铁的退火温度相近。三、去应力退火工艺为了提高去应力退火的实际效果,加热温度最好能达到铸件最后一次完全卸载温度。在低于最后一 次完全卸载温度时,加热温度越高,应力消除越充分。但是,加热温度过高,会引起铸件组织发生变化,从 而影响铸件的性能。对于灰铸铁件,加热温度过高,会使共析渗碳体石墨化,使铸件强度和硬度降低。

6、对于 白口铸铁件,加热温度过高,也会使共析渗碳体分解,使铸件的硬度和耐磨性大幅度降低。普通灰铸铁去应力退火的加热温度为 550。当铸铁中含有稳定基体组织的合金元素时,可适当提 高去应力退火温度。低合金灰口铸铁为 600,高合金灰口铸铁可提高到 650。加热速度一般为 60100 /h.保温时间可按以下经验公式计算: H铸件厚度/25H,式中铸件厚度的单位是毫米,保温时间的单位 是小时,H在 28 范围里选择。形状复杂和要求充分消除应力的铸件应取较大的 H值。随炉冷却速度应控 制在 30/h 以下,一般铸件冷至 150200出炉,形状复杂的铸件冷至 100出炉。表 1 为一些灰铸铁件的 去应力退

7、火规范,供参考。表 1 一些灰铸铁件的去应力退火规范 铸件类别铸件 质量铸件 厚度热处理规范tmm 装炉温 度加热速 度/h退火温 度保温时 间 h冷却速 度/h出炉温 度70200755005 5091020302004070200704505 00892030200鼓风机机架 等具有复杂外 形并要求精确 尺寸的铸件1. 540150604204 50563040200机床床身等 类似铸件2. 0208015030605005 5031030401802 00 较小型机床 铸件0. 10602001001 505005 503520301502 00 筒形结构简单 铸件0. 30104090

8、30 01001 505506 00234050200纺织机械等 小型铸件0. 051515050705005 501.53040150普通白口铸铁去应力退火的加热温度不应超过 500,高合金白口铸铁由于其共析渗碳体稳定性好及铸造 应力大,其加热温度一般远远高于普通白口铸铁,可达 800900。表 2 给出了两种高合金白口铸铁的去应 力退火规范,供参考。 表 2 两种高合金白口铸铁的去应力退火规范 铸铁种类和成分加热速度退火温度保温时间冷却速度形状简 单的中、 小件 100/h85090024h随炉缓慢冷却 (3050/h)高硅耐蚀铸铁 (C 0.50.8, Si 14.516, Mn 0.3

9、0.8, S 0.07, P 0.1或 Si 1618)形状复 杂件:浇 注凝固 后,700 出型入炉78085024h随炉缓慢冷却 (3050/h)高铬铸铁 (C 0.51.0,Si0.51.3, Mn 0.50.8,Cr 2630, S 0.08,P 0.1或 C 1.52.2,Si 1.31.7, Mn 0.50.8,Cr 3236, S 0.1,P 0.1)500以 下: 2030 /h, 500以上: 50/h820850H铸件壁厚 /25,h随炉缓慢冷却 (2540/h) 至 100150出炉 空冷铸铁的热处理(2)第二节 石墨化退火热处理石墨化退火的目的是使铸铁中渗碳体分解为石墨

10、和铁素体。这种热处理工艺是可锻铸铁件生产的必 要环节。在灰铸铁生产中,为降低铸件硬度,便于切削加工,有时也采用这种工艺方法。在球墨铸铁生产中 常用这种处理方法获得高韧性铁素体球墨铸铁。一、石墨化退火的理论基础根据相稳定的自由能计算,铸铁中渗碳体是介稳定相,石墨是稳定相,渗碳体在低温时的稳定性低 于高温。因此从热力学的角度看,渗碳体在任一温度下都可以分解为石墨和铁碳固溶体,而且在低温下,渗 碳体分解更容易。但是,石墨化过程能否进行,还取决于石墨的形核及碳的扩散能力等动力学因素。对于固态相变, 原子的扩散对相变能否进行起重要作用。由于温度较高时,原子的扩散比较容易,因此实际上渗碳体在高温 时分解比

11、较容易。尤其是自由渗碳体和共晶渗碳体分解时,由于要求原子做远距离扩散,只有在温度较高时 才有可能进行。1.石墨的形核对于可锻铸铁,渗碳体的分解首先要求形成石墨核心。在固相基体中,石墨形核既要克服新相形成所引起的界面能的增加,同时又要克服石墨形核时体积 膨胀所受到的外界阻碍,因此其形核比在液态时要困难得多。由于在渗碳体与其周围固溶体的界面上存在有 大量的空位等晶体缺陷,石墨晶核首先在这里形成。在渗碳体内,尽管也可能存在有晶体缺陷,但是由于石墨形核会引起较大的体积膨胀,而渗碳体硬 度高,体积容让性差,必然会对此产生巨大的阻力,从而阻碍石墨核心在其内部形成。在实际生产中,铸铁内往往存在有各种氧化物、

12、硫化物等夹杂物。其中一些夹杂物与石墨有良好的 晶格对应关系,可以作为石墨形核的基底,减小了由于石墨形核所造成的界面能的增加。因此在实际条件下, 石墨形核要比理想状态容易些。对于灰铸铁和球墨铸铁,石墨化过程不需要石墨重新形核。2.高温石墨化过程高温石墨化的主要目的是使自由渗碳体和共晶渗碳体分解。如果把含有渗碳体的铸铁加热到奥氏体 温度区域,石墨的形核则发生在奥氏体与渗碳体的界面上。石墨形核后,随着渗碳体的分解,借助于碳原子 向石墨核心的扩散不断长大,最终完成石墨化过程。需要指出的是,对于可锻铸铁而言,其铸态组织是按亚稳定系凝固而成,其中奥氏体相对于稳定系 奥氏体呈碳过饱和状态,石墨化后,奥氏体中

13、碳浓度也要发生变化。石墨化完成后,铸铁的平衡组织为奥氏 体加石墨。如果此时将铸铁缓慢冷却,奥氏体将发生共析转变,其转变产物是铁素体和二次石墨,铸铁的最 终平衡组织为铁素体加石墨。3.低温石墨化过程低温石墨化是指在 A1 温度(720750)以下保温的石墨化过程。可分为两种情况:一种是铸铁经 过高温奥氏体化后再进行低温石墨化处理;另一种是铸铁不经过高温奥氏体化,而仅加热到 A1 温度以下进行 低温石墨化。前者的目的是使奥氏体在共析转变时按稳定系转变为铁素体和石墨。后者不形成奥氏体,共析渗碳 体直接分解为铁素体加石墨。如前所述,从热力学条件看,在低温下石墨化是可能的。此时关键的问题是碳原子的扩散。

14、在低温 下,碳原子本身的扩散能力很低,加之铁素体溶解碳的能力很小,碳原子的扩散比较困难,主要通过晶粒边 界和晶体内部缺陷进行。因此,要提高低温石墨化的速度,关键是减小碳原子的扩散距离。细化铸态组织, 增加晶界,增加石墨核心是减小碳原子扩散距离的有效措施。二、石墨化退火工艺1.铁素体(黑心)可锻铸铁的石墨化退火工艺图 2 所示,黑心可锻铸铁的石墨化有五个阶段:(1) 升温;(2) 第一阶段石墨化;(3) 中间 阶段冷却;(4) 第二阶段石墨化;(5) 出炉冷却。表 3 为一些典型可锻铸铁件石墨化退火实例,供参考。表 3 一些典型可锻铸铁件石墨化退火实例产品名称铸铁牌号化学成分 孕育剂 退火炉退火

15、规 范汽车底盘零 件KTH350-10C 2.52.7, Si 1.31.6, Mn 0.350.5, P 0.050.07, S0.15B 0.002 Bi 0.006 Al 0.00825t 升降 式电炉汽车拖拉机 铁道等零件KTH350- 10;KTH370- 12C 2.32.6, Si 1.52.0, Mn 0.40.6, P 0.12, S 0.150.20Bi 0.0060 .01 Al 0.008连续式火 焰隧道炉阀门、手扶 拖拉机零件KTH350-10C 2.32.7, Si 1.141.36, Mn 0.30.4, P 0.1, S 0.070.09Al 0.015b330

16、400 MPa;8 20;120 163HBSC 2.652.80, Si 1.51.7, Mn 0.40.6, P 0.1, S 0.20, Cr 0.06锌气氛燃 煤炉2.珠光体可锻铸铁石墨化退火工艺珠光体可锻铸铁的石墨化退火与铁素体可锻铸铁的第一阶段石墨化相同,但不进行第二阶段石墨化,或在 第一阶段石墨化后淬火并高温回火。其热处理实例见表 4。 表 4 珠光体可锻铸铁石墨化退火实例产品名称铸铁牌号化学成分 孕育剂 退火炉基体组织退火 规范手扶拖拉机 轴承座、插 销等KTZ450-06; KTZ550-04C 2.42.6, Si 1.31.5, Mn 0.40.8, P 0.1, S 0.15室内媒

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 教育/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号