非牛顿流体的流动

上传人:飞*** 文档编号:37992482 上传时间:2018-04-25 格式:PDF 页数:19 大小:807.30KB
返回 下载 相关 举报
非牛顿流体的流动_第1页
第1页 / 共19页
非牛顿流体的流动_第2页
第2页 / 共19页
非牛顿流体的流动_第3页
第3页 / 共19页
非牛顿流体的流动_第4页
第4页 / 共19页
非牛顿流体的流动_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《非牛顿流体的流动》由会员分享,可在线阅读,更多相关《非牛顿流体的流动(19页珍藏版)》请在金锄头文库上搜索。

1、非牛顿流体的研究性学习非牛顿流体科技名词定义中文名称:非牛顿流体英文名称: non-Newtonian fluid 定义:黏度系数在剪切速率变化时不能保持为常数的流体。所属学科:机械工程(一级学科) ;分析仪器(二级学科) ;物性分析仪器 -物性分析仪器一般名词(三级学科)(本内容由全国科学技术名词审定委员会审定公布)牛顿 1687 年发表了以水为工作介质的一维剪切流动的实验结果。实验是在两平行平板间充满水时进行的( 图 1), 下平板固定不动,上平板在其自身平面内以等速U向右运动。此时附于上下平板的流体质 点的速度分别为U 和 0,两平板间的速度呈线性分布。由此得到了著名的牛顿粘性定律相关理

2、论斯托克斯 1845 年在牛顿这一实验定律的基础上,作了应力张量是 应变率张量的线性函数、流体各向同性、流体静止时应变率为零的三 项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及 现被广泛应用的纳维斯托克斯方程。后来人们在进一步的研究中知道,牛顿粘性实验定律( 以及在此基础上建立的纳斯方程)对于描述像水和空气这样低分子量的流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间已不再满足线性关系。为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。早在人类出现之前, 非牛顿流体就已存在, 因为绝大多数

3、生物流 体都属于现在所定义的非牛顿流体。人身上的血液、淋巴液、囊液等多种体液以及像细胞质那样的“半流体”都属于非牛顿流体。现在去医院作血液测试的项目之一,已不再说是“血粘度检查”,而是“血液流变学检查” ( 简称血流变 ),这就是因为对血液而言,剪应力与剪切应变率之间不再是线性关系,已无法只给出一个斜率( 即粘度)来说明血液的力学特性。非牛顿流体及其奇妙特性现在去医院作血液测试的项目之一,己不再是“血黏度检查”,而是“血液流变学捡查”(简称血流变),为什么会有这样的变化呢?这就要从非牛顿流体谈起。英国科学家牛顿于1687 年,发表了以水为工作介质的一维剪切流动的实验结果。 实验是在两平行平板间

4、充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。此时,附着于上、下平板的流体质点的速度,分别是U和 0,两平板间的速度呈线性分布,斜率是黏度系数。由此得到了著名的牛顿黏性定律。斯托克斯 1845 年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、 流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的纳维 -斯托克斯方程(简称:纳斯方程) 。后来人们在进一步的研究中知道,牛顿黏性实验定律 (以及在此基础上建立的纳斯方程) ,对于描述像水和空气这样低分子量的简单流体是适合的, 而对描述具有高分子量的流体

5、就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。为区别起见, 人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。因为对血液而言, 剪应力与剪切应变率之间己不再是线性关系,己无法只给出一个斜率(即黏度)来说明血液的力学特性,只好作血流变学测试, 给出二者间的非线性关系。形形色色的非牛顿流体早在人类出现之前, 非牛顿流体就己存在, 因为绝大多数生物流体都属于现在所定义的非牛顿流体。人身上的血液、淋巴液、囊液等多种体液,以及像细胞质那样的“半流体”,都属于非牛顿流体。近几十年来, 促使非牛顿流体研究迅速开展的主要动力之一,是聚合物工业的发展

6、。聚乙烯、聚丙烯酰胺、聚氯乙烯、尼龙6、PVS 、赛璐珞、涤纶、橡胶溶液、各种工程塑料、化纤的熔体、溶液等,都是非牛顿流体。石油、泥浆、水煤浆、陶瓷浆、纸浆、油漆、油墨、牙膏、家蚕丝再生溶液、钻井用的洗井液和完井液、 磁浆、某些感光材料的涂液、泡沫、液晶、高含沙水流、泥石流、地幔等也都是非牛顿流体。非牛顿流体在食品工业中也很普遍,如番茄汁、淀粉液、蛋清、苹果浆、菜汤、浓糖水、酱油、果酱、炼乳、琼脂、土豆浆、熔化巧克力、面团、米粉团、以及鱼糜、肉糜等各种糜状食品物料。综上所述,在日常生活和工业生产中, 常遇到的各种高分子溶液、熔体、膏体、凝胶、交联体系、悬浮体系等复杂性质的流体,差不多都是非牛顿

7、流体。有时为了工业生产的目的,在某种牛顿流体中,加入一些聚合物,在改进其性能的同时,也将其变成为非牛顿流体,如为提高石油产量使用的压裂液、新型润滑剂等。现在也有人将血液、 果浆、蛋清、奶油等这些非常黏稠的液体, 牙膏、石油、泥浆、油漆、各种聚合物(聚乙烯、尼龙、涤纶、橡胶等)溶液等非牛顿流体,称为软物质。【研究目的】 (1) 初步了解非牛顿流体的制备方法与识别标准(2)初步认识非牛顿流体的特殊性质(3)非牛顿流体的创新应用【器材】淀粉,水,硬质小球,两容器,一表面光滑的长棍,一中空导管一碟一碗一杯一筷子【研究过程】 1 以淀粉:水 =3:1 的比例先加水后加淀粉混合两物质,搅拌的淀粉糊 (非牛

8、顿流体 ) 2用一保鲜袋包着穿个洞再再用力挤. 3再使其自由流下4在一只有粘弹性流体(非牛顿流体的一种)的烧杯里,把实验杆插进流体中再旋转。5把流体装进一杯中 , 微向侧倾致有流体留下 , 再立正 . 6用一重球从高处落下打到流体上。【总结与思考】【本研究查的资料】 (1) 淀粉糊型非的制法(2) 非的辨别标准(3) 非牛顿流体特性及研究3.1 射流胀大(4) 如果非牛顿流体被迫从一个大容器流进一根毛细管,再从毛细管流出时,可发现射流的直径比毛细管的直径大3.2爬杆效应在一只有粘弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。对于牛顿流体,由于离心力验的作用,液面将呈凹形;而对于粘弹性流体,

9、却向杯中心运动,并沿杆向上爬,液面变成凸形。甚至在实验杆的旋转速度很低时,也可以观察到这一现象。促使非牛顿流体研究迅速开展的主要动力之一是聚合物工业的发展。聚乙烯,聚丙烯酰氨,聚氯乙烯,尼龙6,PVS ,赛璐珞,涤纶,橡胶溶液,各种工程塑料,化纤的熔体、溶液等都是非牛顿流体。石油,泥浆,水煤浆,陶瓷浆,纸浆,油漆,油墨,牙膏,家蚕丝再生溶液,钻井用的洗井液和完井液,磁浆,某些感光材料的涂液,泡沫,液晶,高含沙水流,泥石流,地幔等也都是非牛顿流体。非牛顿流体在食品工业中也很普遍,如番茄汁,淀粉液,蛋清,苹果浆,菜汤,浓糖水,酱油,果酱,炼乳,琼脂,土豆浆,熔化巧克力,面团,米粉团,以及鱼糜、肉糜

10、等各种糜状食品物料。3.3 无管虹吸将管子慢慢地从容器里拔起时,可以看到虽然管子已不再插在流体里,流体仍源源不断地从杯中抽起,继续流进管里。甚至更简单地,连虹吸管都不要, 将装满该流体的烧杯微倾, 使流体流下,这过程一旦开始,就不会中止,直到杯中流体都流光。3.4 连滴效应 ( 其自由射流形成的小滴之间有液流小杆相连) 3.5 拔丝性 ( 能拉伸成极细的细丝,可见笔者另一文“春蚕到死丝方尽”) 3.6 剪切变稀3.7 液流反弹非牛顿流体的奇妙特性及应用射流胀大如果非牛顿流体被迫从一个大容器,流进一根毛细管, 再从毛细管流出时,可发现射流的直径比毛细管的直径大。射流的直径与毛细管直径之比,称为模

11、片胀大率(或称为挤出物胀大比)。对牛顿流体,它依赖于雷诺数,其值约在0.881.12 之间。而对于高分子熔体或浓溶液,其值大得多,甚至可超过10。一般来说,模片胀大率是流动速率与毛细管长度的函数。模片胀大现象,在口模设计中十分重要。聚合物熔体从一根矩形截面的管口流出时,管截面长边处的胀大, 比短边处的胀大更加显著。尤其在管截面的长边中央胀得最大。因此,如果要求生产出的产品的截面是矩形的,口模的形状就不能是矩形,而必须是四边中间都凹进去的形状。这种射流胀大现象,也叫Barus效应,或Merrington效应。图 1 奶酪生产情景:奶酪从管中流出后马上胀大爬杆效应1944 年 Weissenber

12、g 在英国伦敦帝国学院,公开表演了一个有趣的实验:在一只有黏弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。对于牛顿流体,由于离心力的作用,液面将呈凹形; 而对于黏弹性流体, 却向杯中心流动,并沿杆向上爬, 液面变成凸形,甚至在实验杆旋转速度很低时,也可以观察到这一现象。爬杆效应也称为Weissenberg 效应。在设计混合器时, 必须考虑爬杆效应的影响。同样,在设计非牛顿流体的输运泵时,也应考虑和利用这一效应。图 2 爬杆效应实验:左为牛顿流体,右为黏弹性流体无管虹吸对于牛顿流体来说,在虹吸实验时,如果将虹吸管提离液面,虹吸马上就会停止。 但对高分子液体, 如聚异丁烯的汽油溶液和百分之一的

13、 POX 水溶液,或聚醣在水中的轻微凝肢体系等,都很容易表演无管虹吸实验。 将管子慢慢地从容器拨起时,可以看到虽然管子己不再插在液体里, 液体仍源源不断地从杯中抽出,继续流进管里。甚至更简单些,连虹吸管都不要,将装满该液体的烧杯微倾,使液体流下,该过程一旦开始,就不会中止,直到杯中液体都流光。 这种无管虹吸的特性,是合成纤维具备可纺性的基础。图 3 无管缸吸:对于化纤生产有重要意义湍流减阻非牛顿流体显示出的另一奇妙性质,是湍流减阻。人们观察到,如果在牛顿流体中加入少量聚合物,则 在 给 定 的 速 率下,可以看到显著的压差降。湍流一直是困扰理论物理和流体力学界未解决的难题。然而在牛顿流体中加入

14、少量高聚物添加剂,却 出 现 了 减 阻 效应。有人报告:在加入高聚物添加剂后,测得猝发周期加大了,认为是高分子链的作用。减阻效应也称为Toms效应,虽然其道理尚未弄得很清楚,却己有不错的应用。 在消防水中添加少量聚乙烯氧化物,可使消防车龙头喷出的水的扬程提高一倍以上。应用高聚物添加剂, 还能改善气蚀发生过程及其破坏作用。图 4 湍流减阻:在同样动力下两幅消防水龙头喷水。上图为未添加聚乙烯氧化物的情形,下图为添加聚乙烯氧化物后的情形非牛顿流体除具有以上几种有趣的性质外,还有其他一些受到人们重视的奇妙特性,如拔丝性(能拉伸成极细的细丝),剪切变稀,连滴效应(其自由射流形成的小滴之间有液流小杆相连

15、),液流反弹等。由于非牛顿流体涉及许多工业生产部门的工艺、设备、效率和产品质量,也涉及人本身的生活和健康, 所以越来越受到科学工作者的重视。1996年 8 月在日本京都国际会议中心,召开的第19 届国际理论与应用力学大会( IUTAM )上,非牛顿流体流动是大会的6 个重点主题之一,也是流体力学方面参与最踊跃的主题。Grochet 邀请报告的观点是,高分子溶液和熔体的特性远异于牛顿流体,并认为对这些异常特性的研究,都是带有挑战性的课题。(原刊登于物理教学2002 年 24卷 3 期)1、牛顿流体流体流动时切应力和速度梯度之间的关系符合牛顿内摩擦定律的流体。dydu2、非牛顿流体流体流动时切应力

16、和速度梯度之间的关系不符合牛顿内摩擦定律的流体。3、非牛顿流体的分类粘弹性流体动之中的、弹性变形寓于粘性流震凝性流体触变性流体流体、流变性与时间有关的膨胀性流体屈服假塑性流体屈服膨胀流体假塑性流体塑性流体流体、流变性与时间无关的非牛顿流体321二、流变性、流变方程和流变曲线流变性: 流体流动和变形的特性。流变方程: 描述切应力与速度梯度之间关系的方程式。流变曲线:在直角坐标中表示流体切应力和速度梯度之间变化关系的实验曲线。1、牛顿流体( A)流变方程:dydu特点:(1)受到外力作用就流动;(2)在恒温恒压下,与dydu的比值为常数即粘度为常数;(3)流变曲线是通过原点的直线,其斜率为动力粘度的倒数,即1tan2、塑性流体( B)流变方程( 宾汉公式 ) :)适 用 于 流 变 曲 线 直 线 段(0dydup特点:(1)塑性流体的流变性与牛顿流体不同,受力后,不能立即变形流动。(2)流动初期切应力与速度梯度之间呈曲线关系,粘度随切应力增大而降低,随速度梯度的增大, 切应力逐渐减弱, 最后接近牛顿流体,成直线关系,流体的粘度不再随切应力的增加而变化,称为塑性粘度

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号