黄河包头河段泥沙模型设计

上传人:l****6 文档编号:37646195 上传时间:2018-04-20 格式:DOC 页数:14 大小:41.50KB
返回 下载 相关 举报
黄河包头河段泥沙模型设计_第1页
第1页 / 共14页
黄河包头河段泥沙模型设计_第2页
第2页 / 共14页
黄河包头河段泥沙模型设计_第3页
第3页 / 共14页
黄河包头河段泥沙模型设计_第4页
第4页 / 共14页
黄河包头河段泥沙模型设计_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《黄河包头河段泥沙模型设计》由会员分享,可在线阅读,更多相关《黄河包头河段泥沙模型设计(14页珍藏版)》请在金锄头文库上搜索。

1、1黄河包头河段泥沙模型设计摘要:针对黄河泥沙多且变化大的特点,采用泥沙运动相似条件的最新研究成果,完成了黄河包头河段动床模型沙选择和比尺设计。利用原型实测资料进行的验证试验,表明模型小河较好地复演了原型河势、水沙运动规律及河床冲淤变形等。 关键词:泥沙模型 模型设计 黄河 1 模拟河段河道概况黄河包头段位于著名的河套地区。包头画匠营子河段位于包头市新市区略偏东处,距新市区约 12km,在昭君坟和磴口之间(昭君坟水文站与磴口水文站相距约 53km)。试验河段包括包头黄河公路桥下游 1800m,两桥间 800m,铁路桥上游3200m,共计约 6000m。对昭君坟水文站 1934 年以来的水文资料整

2、理分析后,按中水 3000m3/s 的流量考虑,得到原型河段代表性资料如表 1。表 1 原型河道水流要素特征值Characteristic values of river flow in prototype项 目2取 值项 目取 值河段长度 L6000m河段比降 i0.10.2河道宽度 B1000m悬移质中径 d500.028mm主河道平均宽度 b400m河床床沙中径 D5030.18mm平均水深 H4.5m最大流量 Q1%6200m3/s平均流速 V1.7m/s最小流量 Qmin48m3/s河床糙率 nb0.0150.020泥沙比重 s2.652.70河滩糙率 nt0.0200.030泥沙沉

3、速 0.22cm/s42 河流泥沙模型相似条件目前黄河动床模型相似律的研究较多14,并结合黄河包头河段的特性,采用下列相似比尺关系作为本模型设计的依据。重力相似V=h1/2 (1)阻力相似n=H 2/3/L 1/2(2)由水流连续方程,可分别得出流量及时间比尺关系式Q=VLH(3)t1=L/V(4)悬移质相似5=V(H/L)3/4(5)对于细沙河流,当悬沙粒径 d0.15mm 时(原形悬沙均能满足这一些条件),悬沙沉速用滞留区公式计算,由此得悬沙粒径比尺d=(V/s-)1/2(6)底沙起动及扬动相似V=Vc=Vf(7)水流输沙率相似S=S*(8)河床冲淤变形相似t2=o2LH/Gs(9)对于悬

4、沙模型,上式又可表示为6t2=o/st1(10)河型相似(s-/D50H)1/3/iB2/3m(s-/D50H)1/3/iB2/3p(11)3 几何比尺及模型沙选取3.1 几何比尺及模型变率根据试验河段平面范围及试验场地条件,选取水平比尺 L =150。考虑到模型水流深度应满足表面张力及试验量测的要求,对模型几何变率前期的研究成果和模型沙特性等方面权衡后,取垂直比尺 H=50,则几何变率 Dt=3。采用张红武3提出的变态模型相对保证率的公式求得 Dt5.6;利用张瑞瑾4提出的模型变态限制指标求得 Dt6.9。验算结果表明本模型采用的变率在各家公式限制的范围之内,几何变态的影响有限,可以满足工程

5、需要。 3.2 模型沙选取根据式(2)求得 n=1.11(取 R=H),因而模型糙率 nm=0.0140.018,经比选后,决定采用经过专门加工处理的兰州煤厂精煤粉作为试验模型沙。该材料不仅比重小,而且密实度及凝聚力也较小(试验测得凝聚力 C=0.018kg/m2,内摩擦角 =35,容重 s=1.401.42kg/m3,干容重 00.620.71kg/m3,含水量为60%,D50=0.030.05mm),因而能保证模型河床的活动性,以适应原型河床冲淤变化幅度较大的特点。7原型沙容重 sp=2.662.70 kg/m3,干容重 op=1.401.50kg/m3。模型设计时,取模型沙 sm=1.4

6、1kg/m3, om=0.67kg/m3;取原型沙 sp=2.68 kg/m3,op=1.45 kg/m3。则s-=4.09 o=2.16由式(5)得:=3.10;由式(6)得,d=0.78(根据对原型及模型水流的温差分析,取 =0.8)。要求模型悬沙中径 d50=0.028/0.78=0.036mm。对模型底沙,为保证模型小河的综合稳定性与原型相近,需按照河型相似条件进行选择,即将原型及模型的有关数据代入式(11),得模型床沙中径D50=0.042mm。所对应的床沙粒径比尺 D=0.18/0.042=4.29。为检查底沙的糙率,选用 D50=0.040.06mm 的煤粉作为模型沙进行预备试验

7、,其动床河床糙率为 0.0150.018,下限 0.015 为静平床糙率,上限 0.018 为河床出现沙纹后的动床糙率,故可满足阻力相似条件。为检查所选模型沙能否满足底沙起动及扬动相似条件,需分别确定模型沙及原型沙的起动流速和扬动流速。为此,采用煤粉进行了水槽试验,所得起动及扬动流速试验结果见表 2。表 2 模型沙起动流速试验结果The experiment result of threshold velocity of model sediment8速度 V(m/s)水深备注(cm)弱动普动扬动24.506.009.589sm=1.401.4245.507.5012.4066.508.501

8、3.78d50=0.040.06mm87.209.2014.3010为确定原型底沙的起动流速,点绘了黄河磴口、昭君坟、巴彦高勒及三湖河口水位站资料和引黄渠道沙土不冲流速与含沙量野外资料的关系(见图 1),以分析不冲流速与含沙量的关系,曲线与纵轴的交点,即为清水时的不冲流速。一般认为清水时的不冲流速等于起动流速 6,因而得到原型沙的起动流速 Vcp=0.68m/s,相应水深范围内的模型沙起动流速 Vcm=0.075-0.092m/s,可以得到 Vc0.680.075-0.092=7.39-9.07下面采用沙玉清起动流速公式7计算天然河流床沙起动流速,该公式形式为图 1 不冲流速与含沙量关系Rel

9、ation between non scouring velocity and silt contentVc=0.43d3/4+1.1(0.7-)4/d1/2h1/5(12a)式中 为孔隙率,其稳定值约为 0.4,d 以 mm 计,Vc 以 m/s 计。将 d=0.18mm 代入式(12a)得11Vc=0.41h1/5(12b)当水深 h=1-3.5m 时,采用式(12b)及表 2 结果可求得相应的 vc 值列于表 3。表 3 原型沙起动流速 Vcp 及起动流速比尺 vc 值The values of threshold velocity Vcp and the velocity scale

10、vc of prototype sediment水深(m)1.01.52.03.03.5Vcp(m/s)0.41120.450.470.510.53vc6.836.626.276.005.96备注 v=7.7由表 3 所确定的起动流速比尺略小于流速比尺。根据以上情况综合分析可知,所选模型沙(包括底沙及悬沙中那部分与底沙经常交换的床沙质泥沙)基本能满足13起动相似条件。黄河天然沙扬动流速一般为起动流速的 1.541.75 倍3,取原型底沙Vfp=1.65Vcp,则得到原型沙相应水深下的扬动流速为 0.84m/s。由表 1 查得模型沙扬动流速 Vfm=0.124-0.143m/s。从而 Vf=6.

11、77-5.87。所得扬动流速比尺与流速比尺较接近,表明所选模型沙还满足扬动相似条件(即 vf=v)。从上述模型选沙结果来看,模型床沙中经常被水流冲起变为悬沙的那部分颗粒,其粒径接近模型沙的粒径,因而自然满足悬沙相似条件。3.3 含沙量比尺及时间比尺式(9)是由河床变形方程式推导而来的,考虑了全沙变化对于河床变形的影响。由于原型实际上长期缺乏推移质泥沙观测资料,在试验中对推移质输沙进行定量模拟是相当困难的。不过,根据对原型情况分析后认为,由悬移质泥沙运动所引起的冲淤变化构成了该河段河床变形的主要部分,且推移质泥沙时常与悬移质泥沙交换,进入悬移质运动的行列中,因此本模型仅考虑悬移质输沙量变化的影响

12、,并按照式(10)确定河床的冲淤变形时间比尺。事实上,通过河床验证试验确定模型进口加沙量时,自然反映了推移质运动对河床冲淤变形影响的相似性。另外,一般试验只模拟悬移质中的床沙质,但对于原型情况,悬移质中的冲泻质在河滩造床过程中起到了很大的作用。在试验中若相应扣除来沙量中的冲泻质,不仅使滩地淤积难以相似,而且还会使主槽变形产生偏离。因此本试验不再对悬移质中的床沙质和冲泻质加以区划。考虑到现有挟沙力公式不能同时应用于原型及模型,复杂河流的模型试验已不再直接利用由一些挟沙力公式直接导出的比尺关系式计算 S*3。本试验分别确定原型和模型值,两者之比为含沙量比尺 S*。14经过试验河段附近实测资料验证后

13、(见图 2),采用与原型资料颇为符合的黄科院张红武公式3,即S*=0.14(V3/ghlnh/6D50)0.6(13)图 2 水流挟沙力公式与原型资料对比Comparison between formula and measured data图 3 模型沙 S*与 V3/gh 的关系Relation between S* and V3/gh 将水力泥沙因子代入上式 ,即 V=1.7m/s,h=4.5m,R=4.5m,=0.22cm/s,D50=0.00018m,得 S*p=5.26kg/m3利用模型沙进行挟沙力试验后,得到的结果如图 3 所示,点群遵循的关系可表示为S*m=0.18V3/gh(

14、14)15根据原型水力泥沙因子及相应的比尺,求得模型的Vm=24.05cm/s,Hm=9cm,=0.071cm/s,将其代入(14)式,可得 S*m=4.0kg/m3。由于模型的挟沙能力小于水槽中的挟沙能力,参照以往黄河模型试验的经验,乘以折减系数 K13(一般取 K1=0.7-0.8)得 s*=(0.7-0.8)4.0=2.8-3.2kg/m3 则 s*=5.26/2.8-3.2=1.64-1.88进一步改变水力及泥沙因子计算后可得到 s=s*=1.5-2.0。将 s 及 o 代入(10),得河床变形时间比尺 t2=(1.08-1.44)t1= 22.9-30.6。表明两个时间比尺相差较小,

15、这对于非恒定动床模型试验很有益处,不仅能保证试验的可靠性,也便于试验操作。 4 模型验证对原型较为系统的两组同步水面线进行了施放,模型实测点与原型的偏差一般不超过 2mm (相当于原型 10cm),最大不超过 3.2mm(相当于原型 16cm)。在试验河段公路桥处有长期水位观测资料,将模型中相应的水位流量关系曲线与原型进行比较,可知两者颇为接近。对原型河段实测的 5 个流速断面进行验证,可以看到模型中流速沿河宽的分布与原型符合较好,表明满足了水流相似条件。按原型资料,对模型水沙过程进行概化。参照上述模型设计结果,分别选用不同的含沙量比尺及其相应的河床变形时间比尺施放水沙过程。先后开展了 4 次

16、验证试验,结果表明当含沙量比尺 S=2,相应的河床变形时间比尺 t2=23 时,模型与原型相似良好。试验值不仅真实地复演了原型河势变化,而且由洪后实测的断面地形资料来看,模型河床冲淤变形与原型也颇为一致。5 结论黄河系著名的多沙河流,原型河段又位于河套地区,含沙量大,且河床冲淤变化剧烈。为更真实地模拟原型天然河道中水流运动、泥沙运动以及河床演变的规律,在现有模型相似率的基础上,开展了大量的工作,采用多方案比选,对黄河包16头河段模型设计进行了探索。通过该模型的设计与验证,可得出如下几点认识:1.在确定模型悬沙粗度时,采用式(5)进行比尺计算,从理论上同时兼顾了时均流速输移及紊动扩散对悬沙相似的影响,特别是采用昭君坟、三湖河口、巴彦高勒及磴口等水文站大量资料,对来沙量及当地河

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号