制冷循环原理

上传人:ji****72 文档编号:37629051 上传时间:2018-04-20 格式:DOC 页数:9 大小:424KB
返回 下载 相关 举报
制冷循环原理_第1页
第1页 / 共9页
制冷循环原理_第2页
第2页 / 共9页
制冷循环原理_第3页
第3页 / 共9页
制冷循环原理_第4页
第4页 / 共9页
制冷循环原理_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《制冷循环原理》由会员分享,可在线阅读,更多相关《制冷循环原理(9页珍藏版)》请在金锄头文库上搜索。

1、制冷循环原理制冷循环原理3.1 蒸气压缩式制冷原理蒸气压缩式制冷原理如果制冷工质的状态变化跨越液、气两态,则制冷循环称为蒸气压缩制冷循环。蒸气压缩制冷装置是目前使用最广泛的一种制冷装置,绝大多数家用冰箱、空调机、冷柜等都是采用蒸气压缩式制冷。3.1.1 单级蒸气压缩制冷循环分析单级蒸气压缩制冷循环分析家用冰箱、空调机、冷柜等制冷装置的功能、结构形式、整体布局虽然不同,其主要部件都包括压缩机、冷凝器、膨胀阀(或称节流阀)和蒸发器四部分。通过简化如图 3-1 所示。图 3-1 是蒸气压缩制冷装置制冷循环示意图。其工作循环如下:经过膨胀阀(毛细管)绝热节流,降压降温至状态 4 的湿蒸气进入蒸发器(冷

2、库) ,进行定压蒸发吸热,离开蒸发器时已成为干饱和蒸气;从蒸发器出来的状态 1 的干饱和蒸气被吸入压缩机进行压缩,升压、升温至过热蒸气状态 2;进入冷凝器,进行定压放热,凝结为液体 3;从冷凝器出来的液体经过膨胀阀(毛细管)节流降压至湿蒸气状态 4 进入蒸发器(冷库) ,从而完成了一个循环 4-1-2-3-4。蒸气压缩式制冷循环可概括为四个过程。蒸发过程 4-1 低温低压的液体制冷剂从冷库中以汽化潜热方式吸收被冷却物热量后,变成低温低压的制冷剂蒸气。压缩过程 1-2 为了维持一定的蒸发温度,制冷剂蒸气必须不断地从蒸发器引出,从蒸发器出来的制冷剂蒸气被压缩机吸入并被压缩成高压气体,且由于在压缩过

3、程中,压缩机要消耗一定的机械功,机械能又在此过程中转换为热能,所以制冷剂蒸气的温度有所升高,制冷剂蒸气呈过热状态。冷凝过程 2-3 从制冷压缩机排出的高温高压过热的制冷剂蒸气,进入冷凝器后受到冷却物(如冷却水、空气等)的冷却而变为液体。节流过程 3-4 从冷凝器出来的制冷剂液体经过降压设备(如节流阀、膨胀阀等)减压到蒸发压力。节流后的制冷剂温度也下降到蒸发温度,并产生部分闪蒸气体。节流后的气液混合物进入蒸发器进行蒸发过程。上述四个过程依次不断进行循环,从而达到连续制冷的目的。3.1.2 单级压缩式制冷循环在压单级压缩式制冷循环在压-焓图上的表示焓图上的表示单级压缩式制冷循环主要由压缩机、冷凝器

4、、节流装置和蒸发器四大件所组成,这四大件由管道连接起来,便构成了一个最简单的制冷系统(如图 3-1所示) 。单级蒸气压缩式制冷理论循环的假设条件是:压缩过程 1-2 是绝热压缩过程,前后熵值不变;不考虑制冷剂在流动时摩擦、阻力等损失,即制冷剂在流经冷凝器、蒸发器及连接管道中的压力保持不变,冷凝压力 pk保持不变;蒸发压力 p0不变;节流过程为绝热过程,液态制冷剂的节流前后焓值不变;该制冷系统运行状态则可在压一焓图上绘制和表示出来,如图 3-2 所示。其中各点表示的位置是:0 点蒸发器出口;1 点压缩机吸气口;2 点压缩机排气口;5 点节流装置入口;6 点蒸发器入口。图中各线段的意义如下6-0

5、段:等温等压吸热汽化过程(蒸发过程) 。压力 P0为蒸发压力,温度 t0为蒸发温度。6-0 区间,P0与 t0相对应。两点间焓值之差就是单位工质的制冷量。0-1 段:压力不变情况下的吸气过热过程。在蒸发器出口段至压缩机入口段间的管道由于吸收外界环境的热量,温度升高,而压力不变。1-2 段:等熵压缩过程。在压缩过程中,气体的温度、压力及焓值升高,比体积减小,熵值不变。h:-九,就是压缩机械功。2-3 段:等压放热过程。高压(冷凝压力)条件下,制冷剂气体放出显热,由排气温度 t2:降至冷凝温度 tk。温度下降,状态授变,仍为气体。3-4 段:凝结过程。在冷凝压力 pk下,制冷剂放出潜热而由气态液化

6、为液态,但温度没变,仍是冷凝温度 tk。4-5 段:过冷过程。在冷凝压力 pk下,制冷剂液体继续散热,即向外放出显热。5-6 段:等焓节流过程。制冷剂通过节流装置,由高压 pk降到低压 P0,温度由过冷温度 t5降至蒸发温度 t0;状态由过冷液体变为气液共存状态。h0、h3分别是压力 p0、pk下干饱和蒸气的焓,h4是压力 pk下饱和液体的焓,皆可由饱和蒸气表查得,h2可根据 pk和(S2=S1)由过热蒸气表确定,h5、h1分别根据过冷度和过热度确定。蒸气压缩制冷循环 0-1-2-3-4-5-6-0 在压焓图中的表示如图 3-2 所示。因为蒸气压缩制冷循环的吸热量、放热量以及所需功量皆可用工质

7、在各状态点的焓差来表示。所以制冷量、冷凝放热量以及压缩所需的功都可以用图中线段的长度表示。3.1.3 单级蒸气压缩式制冷理论循环的热力计算单级蒸气压缩式制冷理论循环的热力计算单级蒸气压缩式制冷理论循环在压焓图上表示如图 3-2 所示。在压焓图上表示单级蒸气压缩式制冷循环的热力参数有:单位质量制冷量(简称单位制冷量) lkg 制冷剂在蒸发器内所吸收的热量称为单位制冷量,用符号 q0表示,单位 kJ/kg。在压焓图 3-2 中,可用点 6 和点 0 两点的焓差值表示,即q0 =h0 -h6 =h0 h5 (kJ/kg) (3-1)单位压缩功 压缩机绝热压缩 lkg 制冷剂所消耗的功称为单位压缩功,

8、用符号 w0表示,单位 kJ/kg。在图中用点 2 和点 1 两点的焓差表示,即w0 =h2 h1 (kJ/kg) (3-2)单位冷凝热负荷 lkg 制冷剂在冷凝器中放出的热量称为单位冷凝热负荷,用符号 qk表示,单位是 kJ/kg,在图中,可用点 2 和点 5 的焓差表示,即qk =h2 h5 (kJ/kg) (3-3)单位容积制冷量 l m3制冷剂在蒸发器所吸收的热量称单位容积制冷量,用符号 qv表示,单位是 kJ/m3。它可以很方便地从 q0换算出来,即qv= q0 /V1一(h0 h5)/Vl (kJ/ m3) (3-4)式中 v1吸气状态时制冷剂蒸气的比体积,m3 /kg。循环的制冷

9、系数 = q0/( q1-q2) = (h0-h6)/(h2-h5)-(h1-h6) = (h0-h6)/(h2-h1) (3-5)【例题 3-1】某压缩制冷设备用氨作制冷剂。已知氨的蒸发温度为-10,冷凝温度为 38,压缩机入口是干饱和氨蒸气,要求制冷量为 l00kW,试计算制冷剂流量、压缩机消耗的功率和制冷系数。解 根据题意 t1=-10,t3 =38。由氨的 lgp-h 图(见附录图 2)查出各状态点的参数为h1 =1430kJ/kg p1 =0. 29MPah2=1670kJ/kg p2 =1. 5MPah4 =h3 =350kJ/kg制冷剂流量q0 =h1 -h4=(1430-350

10、) kJ/kg=1080kJ/kg氨的质量流量为 m=100/1080=0. 0926kg/s压缩机消耗的功率w0 =h2 -hl =1670-1430=240kJ/kgP=mw0 =0. 0926240=22. 22kW制冷系数 = q0/ w0=1028/240=4.53.1.4 单级蒸气压缩式制冷实际循环单级蒸气压缩式制冷实际循环实际压缩过程与理论循环过程存在很大区别,主要表现在以下几方面:压缩过程不是等熵过程;实际节流过程中由于与外界有热交换,所以不是绝热节流,而节流后焓值是增大的;制冷剂在蒸发器与冷凝器内传热过程,由于压力变化,制冷剂的温度是渐变的;制冷剂流经阀门、管道和设备时因有阻

11、力存在,为使循环得以实现,故使压缩机的排气压力增高,而吸气压力降低;在吸气过程中由于有热交换,肯定有一定的有害过热。由于实际压缩循环与理论压缩循环存在着多方面差别,所以单级压缩制冷机的实际循环的单位压缩功增大,单位制冷量减少,制冷系数低于理论循环。由于实际过程比较复杂,存在机械摩擦、阻力及热交换等,很难将实际循环过程表示在 lgp-h 图上。在工程计算时,通常是先按理论循环计算,然后用各种系数进行修正。3.1.5 蒸气压缩式热泵循环蒸气压缩式热泵循环热泵装置与制冷装置的工作原理没有什么差别,只是二者的工作目的不同,制冷装置是为了制冷,而热泵装置则是为了供热。如果将图 3-3 中的冷凝器放在室内

12、,则当上述装置工作时,就可以从低温环境中吸取热量并释放到室内来,用于取暖。原则上,可以使一套设备具备制冷和供热两种功能。如图 3-3 所示,如果用一只四通换向阀 A 来控制改变制冷工质在装置中的流向,就可以达到夏季对室内制冷、冬季对室内供热的目的。有些国家(如美国和加拿大)早已将这种采暖与制冷兼用装置用于火车车厢和远洋客货轮的空调,以适应长途旅行运输时各地区气候上的变化。热泵的经济性指标是供热系数 ,它等于制冷剂在冷凝器中放出的热量 q1与压缩机消耗的功 w 之比,即 =q1/w。由于 q1 =w+q2,所以热泵的供热系数恒大于 1,它优于其他供暖装置(如电加热器等)之处,就在于消耗同样多的机

13、械功对室内供暖,可比用其他方法得到更多的热量,即除了由机械功所转换的热量外,还包括制冷剂在蒸发器中所吸收的热量。热泵装置还可以将大量较低品位(即较低温度)的热能提升为较高品位(即较高温度)的热能,以满足生产上的需要。另外,采用热泵供热取代锅炉供热还有利于保护环境不受污染。但是,热泵的使用受到其他条件的限制,例如,我国东北地区冬季室外温度在-20-30或更低,用热泵供热就很不经济,并且由于室内外温差太大,热泵的供热系数将很低,不利于节能;又例如对工业欠发达的国家或地区,热泵装置的造价往往比其他采暖设备高出很多,这也影响了热泵的使用与推广。3.2 双级蒸气压缩式制冷循环双级蒸气压缩式制冷循环3.2

14、.1 双级蒸气压缩式制冷理论循环双级蒸气压缩式制冷理论循环单级制冷压缩机若要制取较低温度时,蒸发温度就很低,相应的蒸发压力就很低,造成制冷机的压缩比(冷凝压力与蒸发压力之间绝对压力的比值)显著增大。当压力比增大到一定程度时,单机制冷压缩机就不能正常工作。这是因为:压缩比增大,压缩机的输气量减少,使制冷量下降,压缩比增大,使压缩机的排气温度升高,汽缸壁温度上升,影响润滑条件,甚至会出现润滑油的碳化等不正常现象;压缩比增大,液态制冷剂节流所引起的损失增大,即节流后产生的闪蒸气体增多,使制冷系数降低。因此,当需制取-25以下低温时一般采用双级压缩。两级压缩制冷的压缩过程分两个阶段进行:来自蒸发器的制

15、冷剂蒸气先在低压压缩机中压缩到中间压力;经过中间冷却,然后再进入高压压缩机压缩到冷凝压力。两级压缩制冷循环,由于节流级数以及液体和蒸气冷却方式的不同,因而有不同的循环形式。例如,有两级节流和一级节流循环,中间完全冷却和中间不完全冷却循环等。实际应用的大都是一级节流循环。两级压缩制冷都采用中间冷却。经过中间冷却后,高压级的排气温度就不致过高。两级压缩制冷机的中间冷却方式是随制冷剂的种类不同而有所不同。对于氨,通常是让低压级的排气冷却到中间压力下的饱和温度,称为中间完全冷却;对于氟里昂,则是让低压级的排气与中间冷却器中蒸发的蒸气相汇合,称为中间不完全冷却。3.2.2 两级压缩氨制冷循环与系统组成两

16、级压缩氨制冷循环与系统组成两级氨压缩制冷机中,大多数是应用一级节流中间完全冷却循环。该循环的系统如图 3-4 所示。来自蒸发器 E 的低压氨蒸气,首先在低压压缩机 A 中被压缩到中间压力pz,排入到中间冷却器 F 中,被其中的氨冷却到中间压力下的饱和温度 tz,再进入高压压缩机 B 中继续被压缩到冷凝压力 pk,然后进入冷凝器中被冷凝成液体。由冷凝器 C 引出的氨液,经过再冷却器D 进一步降低温度,然后分成两路:一路经节流阀 G 降压到中间压力 pz,进入中间冷却器F 中,利用它的蒸发来冷却低压压缩机的排气和盘管内的高压氨液,中间冷却器中蒸发出来的氨蒸气(中间压力 pz下的饱和蒸气) ,随同低压压缩机的排气(降温到中间压力下的饱和温度)一起进入高压压缩机中被压缩,另一路氨液在中间冷却器 F 的盘管内被冷却后流经节流阀 H 节流到蒸发压力 P0,再进入蒸发器 E 中进行蒸发制冷。进入蒸发器的这一部分氨液,在节

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号