抗雷击架空配电线路的可靠性 毕业论文外文翻译

上传人:aa****6 文档编号:36696264 上传时间:2018-04-01 格式:DOC 页数:8 大小:213KB
返回 下载 相关 举报
抗雷击架空配电线路的可靠性  毕业论文外文翻译_第1页
第1页 / 共8页
抗雷击架空配电线路的可靠性  毕业论文外文翻译_第2页
第2页 / 共8页
抗雷击架空配电线路的可靠性  毕业论文外文翻译_第3页
第3页 / 共8页
抗雷击架空配电线路的可靠性  毕业论文外文翻译_第4页
第4页 / 共8页
抗雷击架空配电线路的可靠性  毕业论文外文翻译_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《抗雷击架空配电线路的可靠性 毕业论文外文翻译》由会员分享,可在线阅读,更多相关《抗雷击架空配电线路的可靠性 毕业论文外文翻译(8页珍藏版)》请在金锄头文库上搜索。

1、外文资料翻译Reliability of Lightning Resistant Overhead Distribution LinesLighting continues to be the major cause of outages on overhead power distribution lines. Through laboratory testing and field observations and measurements, the properties of a lightning stroke and its effects on electrical distrib

2、ution system components are well-understood phenomena. This paper presents a compilation of 32 years of historical records for outage causes, duration, and locations for eight distribution feeders at the Oak Ridge National Laboratory (ORNL) .Distribution type lightning arresters are placed at dead-e

3、nd and angle structures at pole mounted wormer locations and at high points on the overhead line. Station class lightning arresters are used to protect underground cable runs, pad mounted switchgear and unit substation transformers. Resistance to earth of each pole ground is typically 15 ohms or les

4、s. At higher elevations in the system, resistance to earth is substantially greater than 15 ohms, especially during the dry summer months. At these high points, ground rods were riven and bonded to the pole grounding systems in the 1960s in an attempt to decrease lightning outages. These attempts we

5、re only partially successful in lowering the outage rate. From a surge protection standpoint the variety of pole structures used (in-line, corner, angle, dead end, etc.) and the variety of insulators and hardware used does not allow each 13.8 kV overhead line to be categorized with a uniform impulse

6、 flashover rating (170 kV, etc.) or a numerical BIL voltage class (95 kV BIL; etc.). For simplicity purposes in the analysis, each overhead line was categorized with a nominal voltage construction class (15 kV, 34 kV, or 69 KV). Six of the eight overhead lines (feeders 1 through 6) were built with t

7、ypical REA Standard horizontal wood cross arm construction utilizing single ANSI Class 55-5 porcelain pin insulators (nominal 15 kV insulation). The shield angle of the overhead ground wire to the phase conductors is typically 45 degrees. One overhead line (feeder 7) was built with transmission type

8、 wood pole construction because the line extended to a research facility which was to have generated electrical power to feed back into the grid. Pole structure of this line are of durable wood cross a construction which utilize double ANSI 52-3 porcelain suspension insulators to support the conduct

9、ors (nominal 34 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 7 is typically 30 degrees. In 1969, an overhead line (feeder 8) was intentionally built with “lightning resistant“ construction in an attempt to reduce lightning caused outages. Pole struc

10、tures of the line have phase over phase 24-inch long fiberglass suspension brackets with double ANSI 52-3 porcelain suspension insulators to support the conductors (nominal 69 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 8 is typically 30 degrees. T

11、he failure data was compiled for each of the eight 13.8 kV feeders and is presented in Table, along with pertinent information regarding feeder construction, elevation, length, and age.A key finding of the failure analysis is that weather-related events account for over half (56%) of the feeder outa

12、ges recorded. Fifty-seven of the 76 weather-related outages were attributed to lightning. Insulation breakdown damage due to lightning is also suspected in at least a dozen of the equipment failures observed. The data indicates overhead lines which pass over high terrain are less reliable because of

13、 the greater exposure to lightning. For example, feeder 3 had the most recorded outages (48), of which two-thirds were due to weather-related events; this feeder is also the highest line on the plant site, rising to an elevation of 450 above the reference valley elevation. Overhead lines that are lo

14、nger and to which more substations and equipment are attached were also observed to be less reliable (more exposure to lightning and more equipment to fail). The age of the line does not appear to significantly lessen its reliability as long as adequate maintenance is performed; none of the lines ha

15、ve had a notable increase in the frequency of outages as the lines have aged. As would be expected, the empirical data presented in Table I confirms the two overhead lines which have been insulated to a higher level (34 or 69 KV) have significantly better reliability records than those utilizing 15

16、kV class construction. Feeder 7 (insulated to 34 KV) and feeder 8 (insulated to 69 kV) have bad only 3 outages each over their 32 and 23 year life spans, respectively. These lines follow similar terrain and are comparable in length and age to the 15 kV class lines, yet they have a combined failure rate of 0.22 failures per year versus 4.32 failures per year for the remaining feeders.On typical 15 kV insulated line construction, lightning

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号