[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】

上传人:mg****85 文档编号:35879197 上传时间:2018-03-21 格式:DOC 页数:35 大小:135KB
返回 下载 相关 举报
[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】_第1页
第1页 / 共35页
[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】_第2页
第2页 / 共35页
[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】_第3页
第3页 / 共35页
[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】_第4页
第4页 / 共35页
[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】》由会员分享,可在线阅读,更多相关《[推荐]-生物化学重点 【对应习题答案教主整理中,敬请期待】(35页珍藏版)》请在金锄头文库上搜索。

1、1生物化学重点生物化学重点第五章第五章 糖代谢糖代谢 一、糖类的生理功用: 氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的 70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。 作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA 等。转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。 二、糖的无氧酵解: 糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡

2、萄糖经无氧酵解可净生成两分子 ATP。 糖的无氧酵解代谢过程可分为四个阶段: 1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成 1,6-双磷酸果糖(FBP),即葡萄糖6-磷酸葡萄糖6-磷酸果糖1,6-双磷酸果糖(F-1,6-BP)。这一阶段需消耗两分子 ATP,己糖激酶(肝中为葡萄糖激酶)和 6-磷酸果糖激酶-1 是关键酶。 2. 裂解(磷酸丙糖的生成):一分子 F-1,6-BP 裂解为两分子 3-磷酸甘油醛,包括两步反应:F-1,6-BP磷酸二羟丙酮 + 3-磷酸甘油醛 和磷酸二羟丙酮3-磷酸甘油醛。 3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成

3、丙酮酸,包括五步反应:3-磷酸甘油醛1,3-二磷酸甘油酸3-磷酸甘油酸2-磷酸甘油酸磷酸烯醇式丙酮酸丙酮酸。此阶段有两次底物水平磷酸化的放能反应,共可生成 22=4 分子 ATP。丙酮酸激酶为关键酶。 4还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的 NADH,使 NADH 重新氧化为 NAD+。即丙酮酸乳酸。 三、糖无氧酵解的调节: 主要是对三个关键酶,即己糖激酶(葡萄糖激酶) 、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。己糖激酶的变构抑制剂是 G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰 CoA 的反馈抑制;6-磷酸果糖激酶-1 是调节糖酵解代谢途径流

4、量的主要因素,受 ATP 和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和 2,6-双磷酸果糖的变构激活;丙酮酸激酶受 1,6-双磷酸果糖的变构激活,受 ATP 的变构抑制,肝中还受到丙氨酸的变构抑制。 四、糖无氧酵解的生理意义: 1. 在无氧和缺氧条件下,作为糖分解供能的补充途径: 骨骼肌在剧烈运动时的相对缺氧; 从平原进入高原初期; 严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧。 2. 在有氧条件下,作为某些组织细胞主要的供能途径:如表皮细胞,红细胞及视网膜等,由于无线粒体,故只能通过无氧酵解供能。 五、糖的有氧氧化: 葡萄糖在有氧条件下彻底氧化分解生成 C2O 和 H2O

5、,并释放出大量能量的过程称为糖的有氧氧化。绝大多数组织细胞通过糖的有氧氧化途径获得能量。此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可产生 36/38 分子 ATP。糖的有氧氧化代谢途径可分为三个阶段: 21葡萄糖经酵解途径生成丙酮酸: 此阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。一分子葡萄糖分解后生成两分子丙酮酸,两分子(NADH+H+)并净生成 2 分子 ATP。NADH 在有氧条件下可进入线粒体产能,共可得到22 或 23 分子 ATP。故第一阶段可净生成 6/8 分子 ATP。 2丙酮酸氧化脱羧生成乙酰 CoA: 丙酮酸进入线粒体,在丙酮酸脱氢酶

6、系的催化下氧化脱羧生成(NADH+H+)和乙酰 CoA。此阶段可由两分子(NADH+H+) 产生 23 分子 ATP 。丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及六种辅助因子,即NAD+、FAD、CoA、TPP、硫辛酸和 Mg2+。 3经三羧酸循环彻底氧化分解: 生成的乙酰 CoA 可进入三羧酸循环彻底氧化分解为 CO2 和 H2O,并释放能量合成 ATP。一分子乙酰 CoA 氧化分解后共可生成 12 分子 ATP,故此阶段可生成 212=24 分子 ATP。 三羧酸循环是指在线粒体中,乙酰 CoA 首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再

7、生的循环反应过程。这一循环反应过程又称为柠檬酸循环或 Krebs 循环。 三羧酸循环由八步反应构成:草酰乙酸 + 乙酰 CoA柠檬酸异柠檬酸-酮戊二酸琥珀酰 CoA琥珀酸延胡索酸苹果酸草酰乙酸。 三羧酸循环的特点:循环反应在线粒体中进行,为不可逆反应。 每完成一次循环,氧化分解掉一分子乙酰基,可生成 12 分子 ATP。 循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。 循环中有两次脱羧反应,生成两分子 CO2。 循环中有四次脱氢反应,生成三分子 NADH 和一分子 FADH2。 循环中有一次直接产能反应,生成一分子 GTP。 三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和

8、-酮戊二酸脱氢酶系,且 -酮戊二酸脱氢酶系的结构与丙酮酸脱氢酶系相似,辅助因子完全相同。 六、糖有氧氧化的生理意义: 1是糖在体内分解供能的主要途径: 生成的 ATP 数目远远多于糖的无氧酵解生成的 ATP 数目; 机体内大多数组织细胞均通过此途径氧化供能。 2是糖、脂、蛋白质氧化供能的共同途径:糖、脂、蛋白质的分解产物主要经此途径彻底氧化分解供能。 3是糖、脂、蛋白质相互转变的枢纽:有氧氧化途径中的中间代谢物可以由糖、脂、蛋白质分解产生,某些中间代谢物也可以由此途径逆行而相互转变。 七、有氧氧化的调节和巴斯德效应: 丙酮酸脱氢酶系受乙酰 CoA、ATP 和 NADH 的变构抑制,受 AMP、

9、ADP 和 NAD+的变构激活。异柠檬酸脱氢酶是调节三羧酸循环流量的主要因素,ATP 是其变构抑制剂,AMP 和 ADP 是其变构激活剂。 巴斯德效应:糖的有氧氧化可以抑制糖的无氧酵解的现象。有氧时,由于酵解产生的 NADH 和丙酮酸进入线粒体而产能,故糖的无氧酵解受抑制。 3八、磷酸戊糖途径: 磷酸戊糖途径是指从 G-6-P 脱氢反应开始,经一系列代谢反应生成磷酸戊糖等中间代谢物,然后再重新进入糖氧化分解代谢途径的一条旁路代谢途径。该旁路途径的起始物是 G-6-P,返回的代谢产物是 3-磷酸甘油醛和 6-磷酸果糖,其重要的中间代谢产物是 5-磷酸核糖和 NADPH。整个代谢途径在胞液中进行。

10、关键酶是 6-磷酸葡萄糖脱氢酶。 九、磷酸戊糖途径的生理意义: 1. 是体内生成 NADPH 的主要代谢途径:NADPH 在体内可用于: 作为供氢体,参与体内的合成代谢:如参与合成脂肪酸、胆固醇等。 参与羟化反应:作为加单氧酶的辅酶,参与对代谢物的羟化。 维持巯基酶的活性。 使氧化型谷胱甘肽还原。 维持红细胞膜的完整性:由于 6-磷酸葡萄糖脱氢酶遗传性缺陷可导致蚕豆病,表现为溶血性贫血。 2. 是体内生成 5-磷酸核糖的唯一代谢途径:体内合成核苷酸和核酸所需的核糖或脱氧核糖均以 5-磷酸核糖的形式提供,其生成方式可以由 G-6-P 脱氢脱羧生成,也可以由 3-磷酸甘油醛和 F-6-P 经基团转

11、移的逆反应生成。 十、糖原的合成与分解: 糖原是由许多葡萄糖分子聚合而成的带有分支的高分子多糖类化合物。糖原分子的直链部分借 -1,4-糖苷键而将葡萄糖残基连接起来,其支链部分则是借 -1,6-糖苷键而形成分支。糖原是一种无还原性的多糖。糖原的合成与分解代谢主要发生在肝、肾和肌肉组织细胞的胞液中。 1糖原的合成代谢:糖原合成的反应过程可分为三个阶段。 活化:由葡萄糖生成尿苷二磷酸葡萄糖:葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDPG。此阶段需使用UTP,并消耗相当于两分子的 ATP。 缩合:在糖原合酶催化下,UDPG 所带的葡萄糖残基通过 -1,4-糖苷键与原有糖原分子的非还原端相连,使糖链延长。

12、糖原合酶是糖原合成的关键酶。 分支:当直链长度达 12 个葡萄糖残基以上时,在分支酶的催化下,将距末端 67 个葡萄糖残基组成的寡糖链由 -1,4-糖苷键转变为 -1,6-糖苷键,使糖原出现分支,同时非还原端增加。 2糖原的分解代谢:糖原的分解代谢可分为三个阶段,是一非耗能过程。 水解:糖原1-磷酸葡萄糖。此阶段的关键酶是糖原磷酸化酶,并需脱支酶协助。 异构:1-磷酸葡萄糖6-磷酸葡萄糖。 脱磷酸:6-磷酸葡萄糖葡萄糖。此过程只能在肝和肾进行。 十一、糖原合成与分解的生理意义: 1贮存能量:葡萄糖可以糖原的形式贮存。 2调节血糖浓度:血糖浓度高时可合成糖原,浓度低时可分解糖原来补充血糖。 3利

13、用乳酸:肝中可经糖异生途径利用糖无氧酵解产生的乳酸来合成糖原。这就是肝糖原合成的三碳途径或间接途径。 4十二、糖异生: 由非糖物质转变为葡萄糖或糖原的过程称为糖异生。该代谢途径主要存在于肝及肾中。糖异生主要沿酵解途径逆行,但由于有三步反应(己糖激酶、磷酸果糖激酶-1、丙酮酸激酶)为不可逆反应,故需经另外的反应绕行。1G-6-P G:由葡萄糖-6-磷酸酶催化进行水解,该酶是糖异生的关键酶之一,不存在于肌肉组织中,故肌肉组织不能生成自由葡萄糖。 2F-1,6-BP F-6-P:由果糖 1,6-二磷酸酶-1 催化进行水解,该酶也是糖异生的关键酶之一。 3丙酮酸 磷酸烯醇式丙酮酸:经由丙酮酸羧化支路完

14、成,即丙酮酸进入线粒体,在丙酮酸羧化酶(需生物素)的催化下生成草酰乙酸,后者转变为苹果酸穿出线粒体并回复为草酰乙酸,再在磷酸烯醇式丙酮酸羧激酶的催化下转变为磷酸烯醇式丙酮酸,这两个酶都是关键酶。 糖异生的原料主要来自于生糖氨基酸、甘油和乳酸。 十三、糖异生的生理意义: 1在饥饿情况下维持血糖浓度的相对恒定:在较长时间饥饿的情况下,机体需要靠糖异生作用生成葡萄糖以维持血糖浓度的相对恒定。 2回收乳酸分子中的能量:由于乳酸主要是在肌肉组织经糖的无氧酵解产生,但肌肉组织糖异生作用很弱,且不能生成自由葡萄糖,故需将产生的乳酸转运至肝脏重新生成葡萄糖后再加以利用。 葡萄糖在肌肉组织中经糖的无氧酵解产生的

15、乳酸,可经血循环转运至肝脏,再经糖的异生作用生成自由葡萄糖后转运至肌肉组织加以利用,这一循环过程就称为乳酸循环(Cori 循环) 。 3维持酸碱平衡:肾脏中生成的 -酮戊二酸可转变为草酰乙酸,然后经糖异生途径生成葡萄糖,这一过程可促进肾脏中的谷氨酰胺脱氨基,生成 NH3,后者可用于中和 H+,故有利于维持酸碱平衡。 十四、血糖: 血液中的葡萄糖含量称为血糖。按真糖法测定,正常空腹血糖浓度为 3.896.11mmol/L(70100mg%) 。1血糖的来源与去路:正常情况下,血糖浓度的相对恒定是由其来源与去路两方面的动态平衡所决定的。血糖的主要来源有: 消化吸收的葡萄糖; 肝脏的糖异生作用; 肝

16、糖原的分解。血糖的主要去路有: 氧化分解供能; 合成糖原(肝、肌、肾) ; 转变为脂肪或氨基酸; 转变为其他糖类物质。 2血糖水平的调节:调节血糖浓度相对恒定的机制有: 组织器官:肝脏:通过加快将血中的葡萄糖转运入肝细胞,以及通过促进肝糖原的合成,以降低血糖浓度;通过促进肝糖原的分解,以及促进糖的异生作用,以增高血糖浓度。肌肉等外周组织:通过促进其对葡萄糖的氧化利用以降低血糖浓度。 激素:降低血糖浓度的激素胰岛素。升高血糖浓度的激素胰高血糖素、肾上腺素、糖皮质激素、生长激素、甲状腺激素。 神经系统。第六章第六章 脂类代谢脂类代谢 一、脂类的分类和生理功用: 脂类是脂肪和类脂的总称,是一大类不溶于水而易溶于有机溶剂的化合物。其中,脂肪主要是

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号