预应力混凝土连续梁桥

上传人:wt****50 文档编号:35150558 上传时间:2018-03-10 格式:DOC 页数:5 大小:42KB
返回 下载 相关 举报
预应力混凝土连续梁桥_第1页
第1页 / 共5页
预应力混凝土连续梁桥_第2页
第2页 / 共5页
预应力混凝土连续梁桥_第3页
第3页 / 共5页
预应力混凝土连续梁桥_第4页
第4页 / 共5页
预应力混凝土连续梁桥_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《预应力混凝土连续梁桥》由会员分享,可在线阅读,更多相关《预应力混凝土连续梁桥(5页珍藏版)》请在金锄头文库上搜索。

1、关于预应力混凝土连续梁桥中的若干问题 徐立功1 吴峰2 一、跨径比 一般情况下,为使边跨正弯矩和中支点负弯矩大致接近的原则,以使布束更趋合理, 构造简单,故 L1/L2=0.239 0.692 是常见的边、主跨的跨径比范围,当 L1/L20.419 时,边跨则需压重,应属于非常规的特殊处理;大都 L1/L2=0.540.58 则较合理,这 将有可能在边跨悬臂端用导梁支承于端墩上合拢边跨,取消落地支架。 二、梁高 主跨箱梁跨中截面的高跨比 h0(1/46.21/86)L2, 通常为(1/541/60)L2,在箱梁 根部的高跨比 h1(1/151/20.6 )L2,大部分为(1/18)L2 左右。

2、 目前在国际上有减少主梁高跨比的趋势,已建成的挪威 stolma 桥和 Raftsundet 桥,在 跨中区段采用了轻质砼,减轻了自重,减小了主梁高跨比,其跨中 h01/86L2 和 1/8 5.1L2,根部高度分别为 h1=1/20.1L2 和 1/20.6L2。 一般情况下,可采用 2 次抛物线的梁底变高曲线,但往往会在 1/4L2 和 1/8L2 处的 底板砼应力紧张,且在该截面附近的主拉应力也较紧张,因而,可将 2 次抛物线变更 为 1.51.8 次方的抛物线更合理。 在江苏平原通航河道上,为了满足通航净空的要求,在设计时甚至采用大于 2 次抛物 线的幂级数设置底板曲线,这是值得十分注

3、意的问题,事实证明,跨中挠度一般较大 ,极易发生正弯矩裂缝和斜裂缝。 三、顶板厚度 以往通常采用 28cm,近年来已趋向于减小为 25cm ,这显然与箱宽和施工技术有关。 四、底板厚度 以往通常采用 32cm(跨中),逐渐向根部变厚,少数桥梁已开始采用 28-25cm 者,其 厚跨比通常为(1/1401/160)L2,也有用到 1/200L2 者。 挪威 stolma 桥和 Raftsundet 桥最大底板厚度为 105cm 和 120cm ,合跨径的 1/286.7 和 1/248.3,这将取得了明显的经济效益。 五、腹板 一般为 40 50cm ,但应特别注意主拉应力的控制,近年来在腹板上

4、出现较多斜裂缝的 病害甚多,应予谨慎。 增加箱梁的挖空率,减轻截面的结构自重,采用高标号砼,采用较大吨位的预应力钢 束,采用三向预应力体系等,无疑都是提高设计水平,获得良好经济效益的重要措施, 但同时又必须合理地掌握好“度” ,必须确保结构的安全度和耐久性。 六、连续通长束不宜过长 根据连续结构的受力特点,截面上既有正弯矩也有负弯矩,个别设计中将连续通长束 顺应弯矩包络图仅作简单布置是欠合理的,尤其对于较小跨径的矮箱梁,其摩擦损失 单项即可达 40 60%k 之多。建议此时可采用两根交叉束布置,也可改用接长器接长, 分成多次张拉等。但在具体设计时接长器也不宜集中在某一个断面上,以使截面的削 弱

5、过于集中,同时也会造成施工上困难。 七、普通钢筋是预应力砼结构中必须配置的材料 当混凝土立方体试块受压破坏时,可以清楚地看到混凝土立方体试块侧向受拉破坏的 形态。也即预应力仅在某一个方向上施加了预压应力,而在其正交方向却会产生相应的侧向拉应力,这是预加应力的最基本概念,必须牢固掌握,灵活应用。 因而,在预应力混凝土结构中必须配置一定数量的非预应力钢筋,以保证预压应力的 可靠建立。为此,在一般情况下,非预应力钢筋约为 80-100kg/m3(一立方米砼中的 含筋量)。偏少、偏多的构造钢筋均需作适当优化和调控。例如桥为多跨 L=42m 的预应力混凝土等高度连续箱梁,设计中采用了 185kg/m3

6、的普通钢筋,明显偏多, 但在某些局部的普通钢筋却又偏少。又如某桥的非预应钢筋仅为 36.6kg/m3,实属太 少。 八、关于扁波纹管、扁锚的采用 扁波纹管的采用,日益广泛,有利于减少构件的截面尺寸,但必须注意如下几点: 1、扁波纹管的尺寸高度不宜太小,不利于饱满灌浆。例如目前采用的 M15-4,其相应 的扁波纹管内径为 7019mm,一般常采用的钢绞线直径为 15.24mm ,则可灌浆的 间隙仅有 3.76mm10.0mm(公路桥规 JTJ023-85,第 6.2.26 条、四中要求:“管 道的内径应比预应力钢筋外径至少大 1.0cm”)。在宽度方向:70- 415.24=9.04mm10mm

7、,其平均间隙为(70-415.24 )/(4+1)=1.8mm 。因此很难 保证灌浆的饱满度和可靠握裹。在施工过程中扁波纹管的变形的可能性远大于圆波纹 管。 2扁波纹管的根数。在实际工程中常用的钢束根数为每管内 4 束或 5 束。其锚圈口的 损失,5 束应大于 4 束,远较圆锚时要大,其锚固效率系数也较难保证达到 95% ,同 时在穿束过程中也极易绞缠在一起,因而建议,每管内 3.0 束合适,4.0 束尚可,5.0 束不妥。 3扁锚用作横向预应力束合适;用作纵向受力主束欠妥,不应采用“扁锚竖置” 作为纵 向受力主束(弯起),这将会使实际有效预应力严重不足,各股钢束在竖置弯起的扁 波纹管内互相嵌

8、挤,摩阻损失很大,对扁波纹管的横向扩张力也很大,各束受力很不 均匀,延伸率无法控制,这种“扁锚竖置” 方案已有多座实桥失败,应该禁止采用。 九、关于钢铰线的弹性模量 Ey 的的理论值为 Ey=(1.9 1.95)105Mpa,而在试验报告中常会出现 Ey =(2.042.06)105Mpa 的结果,如按 Ey=2.04105Mpa 计算张拉伸长量,则理论值 与实际值的误差将达: ,这里已超过施工规范 6%的误差范围了。其原因在于 Ey= ,由于试验值中并未用真实的钢绞线面积 Ay代进上式计算,而是采用了理论值 Ay(偏小值)代进上式计算 Ey,从而得到了偏大的 Ey值。因而,在工程应用中的伸

9、长值控制,必须按实测值 Ey控制,而不应是理论值 Ey 的计算伸长量。 十、锚头或齿板的压陷、压崩破坏 在工程中锚头或齿板压陷、压崩破坏,时有所见。值得注意者,局部受力的锚头或齿 板的砼强度和配筋一般地安全储备较小,且由于该局部区内的配筋又较密,砼操作空 间又较小,振捣工作又较困难,稍有疏忽,很易出现质量事故,所以在施工中应备加 小心。 十一、平面曲线束张拉时,构件会否失稳?I 字形组合 T 梁张拉时构件在横向会否失稳 正确的回答为不会失稳? 其基本概念为后张法张拉时的杆件属“自平衡” 体系,而与杆件作用一个轴压力的平衡 条件有着本质上的差异,前者不会横向失稳,而后者有可能产生横向屈曲失稳。因

10、而, 一根曲杆进行后张法预应力张拉时不必担心其横向失稳问题。 十二、先张法预应力混凝土构件的放张 先张法的放张工艺即是一个施加预加力的工艺过程。原则上要求均匀、一致,不要突 然切割,骤然放张,其冲击力将会破坏钢束自锚区的“传递长度” 范围内的“握裹”。十三、超张拉问题 对于采用夹片锚时,不应再进行超张拉工艺的概念,已被广大设计、施工人员所掌握。 但有时在图纸上仍有超张拉(3%5% )k 的提法。其理由是补偿锚圈口损失 (2.53% )k 所要求。各个厂方所提供锚具的锚圈口损失是不相同的,应由承包商 通过试验后确定,并在张拉时进行调整。但在概念上决不能归属于“超张拉” 的范畴中 去,应属于一种损

11、失补偿的性质。 十四、灌浆、封锚 在张拉过程如果碰到一点问题,是不足为怪的,可以停下来进行专门研讨一番,把问 题弄清楚后再继续张拉,切莫蛮干,更不能“作假” ,进行灌浆、剪丝和封锚,搞成既 成事实,其后果将是无法挽救的损失。 在张拉过程中出现滑丝、断丝、夹片碎裂、锚下砼开裂、反拱过大、反拱过小、构件 侧弯、构件出现裂缝等等异常现象时,必须认真做好原始记录,应立即停工进行专题 研讨后再妥善处理。 灌浆的时间越早越好,检查无误后,应争取及早灌浆,以免高应力下的钢丝锈蚀。 封锚也应及早进行,至少要先用环氧砂浆等涂抹锚头,以防生锈和积水。 十五、预应力混凝土梁的正弯矩裂缝 其主要原因是属预应力不足性质

12、,既可能是设计原因也可能是施工,或可能原因是营 运多年后部分预应力已经失效。在查清原因的基础上,可以采用增加预应力束的方法 处理,但很可能要在体外施加预应力,此类性质的加固一般较麻烦,裂缝虽可部分地 得以闭合和改善,上拱也可有微小的改善,但总会留有一定后遗症。 十六、预应力混凝土梁的斜裂缝 此类裂缝也称主拉应力裂缝,也是 P.C.梁桥中目前出现最多的一种裂缝。一般发生在 支点和四分点附近,在梁轴线附近呈 2550 方向开裂,并逐渐地向受压区发展(宽 度)和延伸(长度),甚至逐渐地向跨中范围内扩展。 斜裂缝的产生原因复杂,属剪切、扭转性质产生的主拉应力不足而引起。从破坏性质 而言则属脆性性质,因

13、而必须十分重视,应采取果断措施,注意检测和及时处理。 在设计中,人们对正截面强度常较注意,而对斜截面强度有时却重视不够,由于变高, 腹板变厚,底板变厚等原因,一目很难了然,也即一眼很难确切地看出在什么部位会 出现斜截面强度不足的问题,计算机有时只会按既定的程序执行,不易发现或者会遗 漏某些最不利截面的计算,甚至缺少了一些最不利组合的工况,例如某桥由于划分单 元太粗,未能发现突变应力的出现而开裂。又如某桥出现了 45 斜裂缝达 148 条,其 中 49 条斜裂缝在腹板的内外侧均已贯通。 目前设计中常采用“ 直束”布置的方案,以利构造和施工。因而在边跨现浇段常不设弯 起束,甚至不布置竖向预应力筋和

14、弯起的普通钢筋。导致了连续梁边跨出现斜裂缝的 情况较为普遍。通常情况下,边跨的梁高较小,如果配置竖向预应力筋,其实际效果 也是很差的,主要是短束的锚头区损失份额太大,施工中也不易正确控制,故建议只 按理论计算值的一半来考虑竖向预压应力(y/2 )较合理。因而,近年来对连续梁边 跨必须布置弯起束的观点已成共识。 关于竖向束的锚头空白区问题也应十分注意,其分布角约为 26,空白区直至会延伸 至腹板,导致靠近翼板加腋处的腹板出现主拉应力裂缝。 在施工中如出现“ 跑模”,导致腹板尺寸减小者也时有所见,较设计厚度少 2cm,直至 4cm 也曾出现,致使主拉应力增大而出现斜裂缝。在竖向预应力筋的施工过程中

15、,由 于数量多,工作烦锁,重视不够而曾出现过各种质量问题,例如:漏张、漏灌浆、张拉吨位不足、未能及时灌浆而使预应力筋已经严重锈蚀等。 在悬臂浇筑时,由于没有预压重,或由于浇筑顺序不正确(必须由悬臂端向根部推进) ,导致了先浇砼的开裂,虽张拉了负弯矩束,但裂缝仍不能完全闭合,由于这类裂缝 的存在导致了剪应力 的增大(已非全截面工作状态),其主拉应力甚至会成倍地增 加。从主拉应力的的计算公式: 可以看出 和 y 对产生 l 主拉应力的关系,因而在施工中必须严格操作,精心施工, 才能确保斜裂缝不会发生和发展。 关于 P.C.连续梁和刚架斜裂缝加固处理的方案应根据具体情况而采取不同的对策。常 用的方法

16、有压灌或封闭裂缝,粘贴碳纤维片,加厚腹板,增加预应力钢束等。但均必 须做好细致的加固设计工作,并进行精心施工,做好营运车辆的统一安排工作等。 十七、纵向裂缝 纵向裂缝也是预应力砼梁中较多出现的一种裂缝。这种裂缝较多地出现在顶、底板上, 沿顺桥向有的纵向缝已经连续贯通, 有的较长,有的则不连续且较短。 1.混凝土硬化期间的纵向缝。此类裂缝常出现在悬浇节段浇筑施工期,在底板较厚的 根部,拆模后即发现底板下缘有纵向缝。由于此时在结构上尚未作用外荷载,其原因 是由于温差引起的自平衡应力,其受拉应力已超过了缓慢提高的砼抗拉强度。 由图 1 中可见,如因底板较厚,硬化期间产生的水化热在厚板中温度较高,在板表面 的温度又较低时,就将在板表面产生收缩,而在板的芯部产生压应力而互相平衡的自 应力平衡状态,尤其是板底极易产生较大的砼拉应变而导致了纵向裂缝的产生。此类 裂缝应加强防收缩钢筋构造,但由于仅在板的表面范围内,此类裂缝一般可以通过封 闭或压灌处理即可。 2.顶板纵向裂缝一

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 社会民生

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号