文档详情

地理数据分布的集中化

wt****50
实名认证
店铺
PPT
258KB
约20页
文档ID:34957689
地理数据分布的集中化_第1页
1/20

第5节 地理数据分布的集中化 与均衡度指数,罗伦次曲线与集中化指数 基尼系数 锡尔系数,(一)罗伦次曲线,20世纪初,意大利统计学家罗伦次(M. Lorenz),首先使用累计频率曲线研究工业化的集中化程度后来,这种曲线就被称之为罗伦次曲线一、罗伦次曲线与集中化指数,绘制罗伦次曲线实例,(1)将表2.5.1各产业部门的收入及其占总收入比重(百分比),从大到小重新排序; (2)从大到小,逐次计算累计百分比; (3)以自然序号为横坐标(x),累计百分比为纵坐标(y);以(部门代码,累计百分比)为坐标点,连成一个上凸的曲线(图2.5.1和图2.5.2),即罗伦次曲线表2.5.1 某地区农户家庭经营性纯收入水平及其构成,,,图2.5.1 1999年农户家庭经 营性纯收入构成的罗伦次曲线,图2.5.2 2004年农户家庭经营性纯收入构成的罗伦次曲线,结果分析,罗伦次曲线的上凸程度,表示农户家庭经营性纯收入的部门集中化程度上凸程度越大,就表示农户家庭经营性纯收入越是集中于某些产业部门 如果各个产业部门的收入是均等的,则罗伦次曲线正好就变成了正方形的对角线 比较图2.5.1和图2.5.2,可以看出该地区1999年农户家庭经营性纯收入的部门集中化程度高于2004年。

假若罗伦次曲线的解析式为: 显然,该曲线下方区域的面积为: 当数据均匀分布时,A就变成了对角线以下三角形的面积(R);当数据集中于一点时,A就变成了整个正方形的面积(M)二)集中化指数,集中化指数 是一个描述地理数据分布的集中化程度的指数显然,I越大,就说明数据分布的集中化程度越高;反之,I越小,就说明数据分布的集中化程度越低(越均衡) 常采用如下近似取值方法: A——实际数据的累计百分比总和; R——均匀分布时的累计百分比总和; M——集中分布时的累计百分比总和 集中化指数在[0,1]区间上取值 只有数据的个数相同而且横坐标划分一致时,才有可比性二、基尼系数,基尼系数(gini coefficient) 就是通过两组数据的对比分析,纵、横坐标均以累计百分比表示,从而做出罗伦次曲线,然后再计算得出的集中化指数它是通过对人口和收入两组数据进行比较分析,然后将纵、横坐标均以累计百分比表示,作出罗伦次曲线,再计算集中化指数而得到的一个判断收入分配不平等程度的指标。

其原理方法如下:,(1)列出每一个区域(部门)的人口与收入占全区(各部门总计)的比重p与w; (2)计算每一区域(部门)的比率w/p; (3)根据w/p值,由小到大将每一地区(部门)排序; (4)按照上述顺序分别计算p和w的累计值X和Y; (5)以X为横坐标,以Y为纵坐标,在直角坐标系中依次连接各点,得到一条下凸的罗伦次曲线基尼系数(G)就可以按照如下公式计算,,假若罗伦次曲线的解析式为: 显然,该曲线下方区域的面积为: 对应于绝对均衡分布,其罗伦次曲线就是正方形的对角线,其下方区域的面积为R=1/2如果用幂函数拟合,则基尼系数的近似计算公式为,式中: 可以通过最小二乘法(详见第3 章)拟合,即,,,,,,(2.5.7),根据分组数据,基尼系数也可以按照如下方法近似地计算: 按人均收入由低到高进行排序,分成若干组(如果不分组,则每一户或每一人为一组),每组收入占总收入比重为 ,每一组人口比重为 ,则基尼系数可以按照下式近似地计算,,式中: 为从第1组到第i组的累积收入比重2.5.8),根据中国大陆1978-2002年各省(直辖市、自治区)的人口数和按照可比价格折算的GDP数据,计算基尼系数,结果如图2.5.4。

可以看出,在1978-1990年期间,基尼系数虽然出现过几次上升和下降的微小波动,但基本趋势是缓慢地下降的;而在1991-2002年期间,基本上呈现上升趋势这一结论,与上节计算的加权变异系数是相互印证的图2.5.4 1978—2002年中国大陆省际收入差异的基尼系数,三、锡尔系数,基尼系数(gini coefficient),用于对经济发展、收入分配等均衡(不均衡)状况,进行定量化的描述 锡尔系数又称锡尔熵,有两个锡尔系数指标,即锡尔系数T 和锡尔系数L 两者的不同之处在于锡尔系数T 以收入比重加权计算,而锡尔系数L则以人口比重加权计算如果以人口比重加权,锡尔系数 L 的计算公式为,式中:n为区域(部门)个数; 为i地区(部门)收入占全区(各部门总计)的份额; 为i地区(部门)的人口占全区(各部门总计)的份额2.5.9),如果以收入比重加权,则锡尔系数 T 的计算公式为,锡尔系数越大,就表示收入分配差异越大;反之,锡尔系数越小,就表示收入分配越均衡2.5.10),根据各省(直辖市、自治区)的人口和按照可比价格折算的GDP数据,计算1978—2002年中国大陆省际差异的锡尔系数T 值,结果如图2.5.5所示。

可以看出,在1978—1990年期间,锡尔系数虽然有微小波动,但基本上呈下降趋势;而在1991—2002年期间,基本上呈现出上升趋势这一结论,与前面计算出的基尼系数也是相互印证的图2.5.5 1978-2002年中国大陆省际收入差异的锡尔系数,。

下载提示
相似文档
正为您匹配相似的精品文档