控制系统的极点配置设计法

上传人:mg****85 文档编号:34047093 上传时间:2018-02-20 格式:DOC 页数:10 大小:1.67MB
返回 下载 相关 举报
控制系统的极点配置设计法_第1页
第1页 / 共10页
控制系统的极点配置设计法_第2页
第2页 / 共10页
控制系统的极点配置设计法_第3页
第3页 / 共10页
控制系统的极点配置设计法_第4页
第4页 / 共10页
控制系统的极点配置设计法_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《控制系统的极点配置设计法》由会员分享,可在线阅读,更多相关《控制系统的极点配置设计法(10页珍藏版)》请在金锄头文库上搜索。

1、控制系统的极点配置设计法一、极点配置原理1.性能指标要求 nst4;当 =0.02时时 , 。nst3 当当 =0.05时时 , 2.极点选择区域图 3.22 系统在 S平面上满足时域性能指标的范围主导极点: 211costan3.其它极点配置原则系统传递函数极点在 s 平面上的分布如图(a)所示。极点 s3距虚轴距离不小于共轭复数极点 s1、s 2距虚轴距离的 5 倍,即(此处 , 对应于极点 s1、s 2) ;同时,极点ns5Re13ns1、s 2的附近不存在系统的零点。由以上条件可算出与极点 s3所对应的过渡过程分量的调整时间为 13541snstt式中 是极点 s1、s 2所对应过渡过

2、程的调整时间。1st j453-n 2ntxo() 、 、3(a) (b)系统极点的位置与阶跃响应的关系图(b)表示图(a)所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点 s1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点 s3、 s4、 s5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。二、极点配置实例磁悬浮轴承控制系统设计1.1磁悬浮轴承系统工作原理图 1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行

3、器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为 I0,它对转子产生的吸力 F和转子的重力 mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。(a) (b)图 1 磁悬浮轴承系统的工作原理Fig.1 The magnetic suspension bearing system principle drawing假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流 I0+i,控制电流由 I0增加到 I0+i,因此,电磁铁的吸力变大了,从

4、而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由 I0,减小到 I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚度、阻尼及稳定性主要是由控制规律决定。实际的磁悬浮轴承系统中,在某个坐标方向上,通常是对称于转子布置两个结构及参数完全相同而

5、作用相反的电磁铁,由这两个电磁铁共同作用产生磁悬浮力将转子悬浮在平衡位置,如图 1(b)所示。2.磁悬浮轴承的开环控制模型2.1 磁悬浮轴承的控制模型1.磁悬浮力方程由图 1(b)求磁悬浮轴承的单边子系统电磁铁对转子产生的磁悬浮力,可根据法拉第电磁力公式近似表示为(1)204xNAIFx式中, 为真空磁导率, 为线圈匝数, 为铁心与气隙的横截面0 A面积, 为电流, 为气隙大小.Ix设转子处于平衡位置时的气隙为 ,当转子离开平衡位置向电0g磁铁方向产生偏移量 ,则通过减小流进绕组的电流 来调节使转子x i回复到平衡位置,把电流表示成 。在转子位移变化很小0Ii(xg o)时,将其线性化得(2)

6、xiFK式中, 为位移刚度系数; 为电流刚度系数。320xANIg20oiANIKg其拉普拉斯变换为:(3)()()()xxiFsKXsI2.电磁绕组端电压方程由于常导电磁轴承的转子位移变化时,其自感系数也要变化,即常导电磁轴承的线圈的电感系数是转子位移 x 的函数,因此其端电压(或电流)也是转子位移 x 的函数。对于图 2 的转子上、下电磁铁绕组,由于 为一微小量,故其自感系数分别近似为x(4)22001 0200(1)()SNxLggx绕组端电压分别为(5)001200()2LLidxut Rigttixt itt式中, 为各电磁铁绕组电阻, 为转子处于平衡位置时上R20SNLg下常导绕组

7、的电感值。由式(9)的第一式加上第二式可得整个串联线圈绕组的端电压为(6)120()()()2dituttLRi其拉氏变换为:(7)0()()UsLRIs式中, 为转子在平衡位置时绕组的电感。200oANLg3.转子运动方程根据牛顿第二定律得球形转子沿 x 方向运动的运动方程为(8)2xdxFmt式中, 为球形转子的质量; 为电磁悬浮力以外的扰动作用。mdF将上式进行拉普拉斯变换得:(9))()(2ssXdx式(3) 、式(7)以及式(9)即为描述通风机磁悬浮轴承系统动力学特性的数学模型。不考虑干扰情况下,由它们得输入绕组电压信号到输出转子径向位移信号的开环系统传递函数为: (10)20()i

8、xKXsULRms由上式可知,开环系统存在 S 复平面上的右极点,故系统不可能稳定。要使其稳定,必须采用反馈控制对系统进行闭环控制。3.磁悬浮轴承的闭环控制1系统控制策略及闭环传递函数1)控制框图及闭环传递函数由(10) 式可知,要使系统稳定,必须对系统进行综合校正。本文采用 PD 控制策略对系统进行串联校正,图 2 为 PD 控制风机磁悬浮系统框图。()Xs20ixKLsRm()Us()vsPD图 2 磁悬浮轴承系统的 PID 控制系统框图(11)0320 0() 2idpixixXsvKTsLmRKRs Lm由上式得系统的特征方程为(12)3200 02ipxidxKTssLL欲使系统满足

9、稳定性要求,由特征方程解出来的特征根必须具有负实部。2)使系统响应速度为最快的极点配置本设计对系统采用极点配置方法来确定有关控制参数。为了提高系统的响应速度,并减小稳态误差,应尽可能使系统 PD 控制器的系数 和 增大。为了确定控制器的参数,可对系统配置 3 个位pKdT于根平面(S 复平面)左侧的闭环极点,并设其中 2 个极点相等即, ,于是系统的特征方程应表述为12(0)sr3(0)sp2()0srp(13)322()srr对比式(14)与式(15)得 (14)0202idxipxRrpLKTrmpL由上式可知,要改善系统的快速响应速度、提高控制精度以及加强系统的稳定性,必须使第 2 式第

10、 3 式中的系数 和 的值尽pKdT可能大。解式(14)得(15)020023004xdixpiRprLmLKTRrRLK为使 和 为最大值,应满足pdT(16)0020046dipiRrLmrKrdr求解上式得 ,将其代入式()并把系统所有相应的结构03RL参数代入得各控制参数为 15.723064.98dprTK于是系统的闭环传递函数为 (17)321.6401753.4978()47598262sss仿真结果仿真程序:mun=1111.11*0 0 212.6401725 10003.49978;den=1 47.1759304 741.86561362 3888.639272;t=0:

11、0.01:1;step(mun,den,t);仿真结果图:0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 100.20.40.60.811.21.4 Step ResponseTime (sec)Amplitude2)使系统满足性能指标要求配置极点性能指标为(18)2105e(19)4.snts式中 和 n为系统的阻尼比和无阻尼自然振荡角频率。按照系统的性能指标要求,可取阻尼比 =1,则 n =40,于是主导极点可配置为:(20)21,2140nnsj另一极点取:s 3-400。则系统的期望闭环特征方程为(22)2(40)s324806s将上式与式(12)对比得0248RL036idxKTLm02640ipxKRLm则结构参数为(23)321.4.15023.8()864sss仿真程序:mun=1111.11/178*0 0 242.212502 102322.8;den=1 480 33600 640000;t=0:0.01:1;step(mun,den,t);仿真图:0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 100.10.20.30.40.50.60.70.80.91 Step ResponseTime (sec)Amplitude

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号