碳是煤中主要的可燃元素

上传人:mg****85 文档编号:33720999 上传时间:2018-02-17 格式:DOC 页数:10 大小:57KB
返回 下载 相关 举报
碳是煤中主要的可燃元素_第1页
第1页 / 共10页
碳是煤中主要的可燃元素_第2页
第2页 / 共10页
碳是煤中主要的可燃元素_第3页
第3页 / 共10页
碳是煤中主要的可燃元素_第4页
第4页 / 共10页
碳是煤中主要的可燃元素_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《碳是煤中主要的可燃元素》由会员分享,可在线阅读,更多相关《碳是煤中主要的可燃元素(10页珍藏版)》请在金锄头文库上搜索。

1、碳是煤中主要的可燃元素,在燃烧过程中放出大量的热;煤的炭化程度越高,含碳量就越大;含碳量高的煤难以着火与燃烬,但是发热量很高。氢也是煤中主要的可燃元素,有效氢的发热量很高,是碳发热量的34 倍,煤中氢含量先随着炭化程度的增加而增加,当煤中含碳量为85%时达到最大值,然后随着炭化程度的增加而下降。氧是煤中有害的不可燃元素,煤中含氧量随着炭化程度的增加而下降,煤中氧含量的存在会使煤发热量降低。氮是煤中的有害不可燃元素,其存在不但降低煤的发热量,而且会生成 NOx 等污染物;硫是煤中的有害元素,在煤燃烧过程中会生成 SOx 等有害污染物。挥发分是煤在隔绝空气条件下加热到850 时析出的气体。挥发分含

2、量多的煤,着火容易,着火温度低,燃烬容易;挥发分含量少的煤,着火温度高,着火困难,燃烬非常困难。灰分是指煤中所含的矿物质在燃烧过程中经过高温分解和氧化作用后生成的一些固体残留物。灰分含量高的煤不仅使煤的发热量减小,而且影响煤的着火与燃烧。由于燃烧烟气中飞灰浓度大,使受热面易受污染影响传热、降低效率,并使受热面易磨损而减少寿命。同时,对排烟中的含尘量必须采用高效除尘措施,使排烟中含尘降低到合格的排放指标。在煤的使用过程中,一定要重视煤的灰熔点,否则容易造成结渣,不利于燃烧过程中空气的流通和气流均匀分布,破坏燃烧过程的稳定运行。水分是煤中的不可燃成分,其存在不仅降低了燃料的可燃质含量,含水量大的燃

3、料发热量低,不易着火、燃烧,而且在燃烧时还要消耗热量使其蒸发和将蒸发的水蒸气加热,降低燃烧室温度,使锅炉效率降低,并使排烟损失加大,还易在低温处腐蚀设备。含水量大的煤使得制粉设备制粉困难,需要高温空气或烟气干燥。同时,水分大的煤也不利于运输,并使成本增加。但是,在高温火焰中水蒸气对燃烧具有催化、媒介作用,可以加速煤粉焦碳的燃烧,可以提高火焰黑度,增加火焰及烟气的辐射放热强度,加强燃烧室炉壁的辐射换热。另外,水蒸气分解时产生的氢分子和氢氧根可以提高火焰的热传导率。这样,水分使飞灰中碳粒减少,从而使机械不完全损失减少,TSP 减少,同时水分的蒸发有利于疏松煤层,增加孔隙率,改善燃烧。因此综合考虑,

4、应以合适水分为好。煤中碳分包括固定碳和游离碳。固定碳是指在隔绝空气的情况下煤中挥发分析出后剩下的固体物质中的含碳量;游离碳是指挥发分中的含碳量。一般来说,煤的煤化程度越高,挥发分含量越少,固定碳含量越高。煤中固定碳含量高,不利于煤的着火和燃烧,煤难以燃烬。18.富氧程度对不同发热量燃料的燃烧影响如何?为什么?燃料在氧气或富氧空气中燃烧时,理论燃烧温度 比在空气中燃烧时要高。这是因为当燃料在氧气或富氧空气中燃烧时,燃烧产物生成量有了变化,燃烧产物的生成量随着空气的富氧程度增加而减小,从而使得燃料的理论发热温度增加。燃料的理论燃烧温度不但和燃料的发热量有关,还与燃料在富氧情况下的燃烧产物生成量有关

5、,发热量比较高的燃料的理论燃烧产物生成量较大,因此受空气的富氧程度的影响较大,而发热量较小的燃料则影响较小。富氧空气中的氧浓度在30%以下时,效果明显,如氧浓度继续增加,效果减弱。活化能(E) :根据活化分子碰撞理论,活化分子所具有的平均能量(E e)与反应物分子的平均能量(E m)之差称为活化能 ( Activation Energy, 用 Ea 表示),表明反应物分子由普通分子转化为活化分子所需要吸收的平均能量,单位 kJmol-1。在一定温度下,某一燃料的活化能越小,其反应能力越强,反应速度受温度的影响也就越小,在较低的温度下也容易着火与燃尽;活化能越大的燃料,其反应能力越差,反应速度受

6、温度的影响越大,不但着火困难,而且需要在较高的温度下经过长时间才能燃尽。活化能的水平是决定燃烧反应速度的内因条件。活化能的影响因素:反应物性质及浓度、温度、压力、反应混合物中惰性物质、催化剂等。何为质量作用定律?化学反应速度与哪些因素有关? 质量作用定律反映了参加反应物质的浓度对化学反应速度的影响,其意义为:对于均相反应,在一定温度下,简单反应或复杂反应的基元反应,其反应速率与各反应物浓度以其化学计量系数为指数幂的乘积成正比,即 。影响因素:温度、活化能、反应物浓度、压力、混合气组成、反应混合气中不可燃气体组成。动力燃烧:燃料与氧化剂混合时间远小于燃料与氧化剂的混合物为达到开始燃烧反应的温度时

7、所需的加热时间和完成化学反应所需时间之和,扩散性能远远超过化学反应性能,燃烧速度取决于化学反应性能,而与扩散性能无关。此时,扩散性能很强,燃料表面有足够的氧气,阻碍燃烧的是不能迅速进行化学反应。如预先混合好的可燃气体与空气混合物的燃烧过程、层燃炉尾部燃烬区的燃烧过程、细小颗粒煤粉的燃烧过程和煤粉炉尾部的燃烧等,即动力燃烧不只在气体燃料燃烧时才存在。其主要影响因素是可燃物与氧的化学反应速度,化学反应速度与反应空间的压力、温度、反应物质浓度有关。对于锅炉的实际燃烧,影响化学反应速度的主要因素是炉内温度,炉温高,化学反应速度快。扩散燃烧:燃料与氧化剂混合时间远大于燃料与氧化剂的混合物为达到开始燃烧反

8、应的温度时所需的加热时间和完成化学反应所需时间之和,化学反应性能远远超过扩散性能时,燃烧速度取决于扩散性能,而与化学反应能力无关,化学反应能力很强,只要氧气扩散到燃料表面,就能立即燃烧掉,阻碍燃烧的是氧气供给不足。如气体燃料与空气分别由两个喷口进入燃烧室的燃烧过程和大颗粒煤的燃烧过程。对于扩散燃烧,对其燃烧进行强化的主要方法是加强燃料与空气的混合,其次是提高二者的温度等。其主要影响因素是氧和可燃物的物理混合速度,而物理混合速度取决于空气与燃料的相对速度、气流扰动情况、扩散速度等。中间(过渡) 态燃烧:当燃烧过程处于扩散燃烧与动力燃烧两种极限情况之间时,扩散能力和化学反应能力相差不大,燃料的燃烧

9、速度与扩散能力和化学反应能力都有关系。为什么工程上常用扩散燃烧方式:扩散燃烧较稳定,安全性高,不会回火;火焰长度可以根据需要调节,燃烧热功率大,可以适应工程的各种需要,操作方便,故在工程上获得广泛应用。自由射流:射流是一种完全的分离流,射流自喷管流出后,在与喷入空间中的介质相互作用下发展,不再受原来的固定边界的影响。因为与外界流体之间存在速度差,且有粘性,射流与周围流体之间产生湍流旋涡。由于微团的脉动和流体之间的摩擦,射流与周围介质之间不断地以湍流扩散的形式进行热量、质量和动量的交换,射流带动周围流体一起沿着射流前进方向移动,结果使射流质量不断增加,射流的横向尺寸(径向)越来越大,而速度不断衰

10、减。煤气喷射到大气中的燃烧,即为自由射流。交叉射流:射流以某一角度与主流相交的射流或两股射流以某一角度交叉喷出的射流现象。交叉射流的混合强度,也就是射流与主气流的动量、质量和热量交换,与射流射入主气流的深度和射程有很大关系。而这些参数,即表征射流运动的特性参数,与主气流和射流的速度、主气流和射流轴线的交角、主气流和射流的温差、密度差、喷嘴的型式等因素有关;交叉射流可以促进射流与主流的混合,因此在工程上应用非常广泛,如在向火焰中喷射二次助燃空气(分级燃烧)或稀释空气(高速等温烧嘴) 时,常采用交叉射流;环状射流与同轴射流:在环状射流与同轴射流的充分发展区,流动状况与轴对称的圆射流类似。但是在靠近

11、喷口附近,在环状射流中心有一低压回流区;在同心射流的交接面上,由于中央喷管有一定厚度,也会在靠近喷口附近形成环状回流区。由于回流区的存在能改善火焰的稳定性,因此,环状射流与同心射流在燃烧技术中特别重要,如有钝体的直流燃烧器和轴向直流燃烧器。旋转射流:射流离开喷口前强迫流体做旋转运动,当流体离开喷口后,除了具有一般射流的径向与轴向速度分量外,还具有一定分布的圆周向(切向)速度分量。由于射流旋转运动的结果,在旋流流场的径向和轴向上都产生压力梯度。当射流旋转比较激烈时,由于轴向压力梯度增大,流体将在轴向上发生倒流,从而在喷口附近出现回流区。因此,旋转射流具有旋转湍流运动、自由射流及尾流的特点:a.

12、旋转射流具有内回流区和外回流区,相对直流射流而言,旋转射流从内外两侧卷吸高温烟气,卷吸周围介质的能力强,扩展角比较大,可以依靠自身的回流区保持稳定着火;b. 旋转射流出口处速度高,由轴向、径向和切向速度组成,气流的早期混合强烈;c. 切向速度衰减很迅速,气流旋转效应消失较快,因此后期混合较弱;d. 旋转射流的轴向速度衰减也较快,因此射流射程较短。简述自由射流的自模性?射流在基本段中各截面的速度、温度与浓度分布是相似的,如圆形喷口的自由射流基本段任一断面的无因次速度、温度与浓度和无因次距离之间具有这样的相似性, 、 、 ,表明各断面速度、温度、浓度分布虽不相同,但各断面的无因次速度、温度、浓度分

13、布规律是相同的。着火温度和着火浓度界限的影响因素有哪些?影响着火温度和着火浓度界限的因素有:可燃混合物的压力、成分、温度、惰性气体含量、流速、可燃预混混合物的初始温度等。试解释为何着火和点火存在着火浓度界限?在一定温度或者压力下,反应放出的热是反应速率的函数,根据化学反应质量作用定律 ,而反应速率取决于化学组成。所以当氧化剂浓度或者燃料浓度很低时,化学反应速度低,放出的热量很少,不足以使混合气内热量积累,着火过程困难,着火温度升高。当混气浓度超出浓度界限时,由于化学反应速率太低,混和气反应放出的热量小于散热时,这时不可能发生着火。根据阿累尼乌斯定律 ,当压力或者温度下降时,化学反应速率常数下降

14、,化学反应速度降低,着火浓度范围缩小;当压力或温度下降超过某一点时,任何浓度成分的混合气都不能着火。点火浓度界限也是如此,而且,着火浓度界限和点火浓度界限是相近的。10.何谓火焰传播速度?火焰传播的特征是什么?按照气体的流动状况,预混可燃气体中的火焰传播可分为哪几种?火焰传播速度:当一个炽热物体或电火花将可燃混合气的某一局部点燃着火时,将形成一个薄层火焰面。火焰面将未燃气体与已燃的烟气分隔开来,燃烧反应只在火焰面内进行。火焰面产生的热量将加热临近层的未燃混合气,使其温度升高直至着火燃烧。这样一层层地着火燃烧,把燃烧逐渐扩展到整个混合气,这种现象称为火焰传播。火焰前沿面在其表面的法线方向上相对于

15、新鲜混合气的移动速度称为火焰传播速度。火焰传播的特征:燃烧反应不是在整个混合气体内同时发生,而是集中在火焰面内进行并逐层传播、逐层进行,传播速度的大小取决于预混气体的物理化学性质与气体的流动状况。按照流动状况,预混可燃气体中的火焰传播可分为层流火焰传播(层流燃烧)和湍流火焰传播(湍流燃烧) 。其中层流气流的火焰传播速度是预混可燃气体的物性参数,即其大小取决于预混气体的物理化学性质。11.层流火焰传播速度(正常火焰传播速度)的主要影响因素是什么? 主要影响因素:可燃气体的种类不同,则其密度、发热量、反应速度、热容等性质均不相同,其层流火焰传播速度不同;可燃气浓度(或空气消耗系数 a)影响大,存在

16、最大值及不可传播区域;可燃气体的正常火焰传播速度与导热系数成正比,导热系数大的可燃气体,火焰传播速度 UL 也大;燃料分子结构;含惰性气体 N2等,可使火焰传播速度 UL 变小:UU L(1-0.01N2-0.012CO2);氧化剂中含氧量,富氧燃烧,火焰传播速度 UL 变大;提高可燃气初始温度,火焰传播速度 UL 变大;在冷却系统中,火焰传播速度 UL 变小,甚至熄灭。熄灭直径:在强化冷却系统中,燃烧传播的速度将减小。管子直径越小,相对冷却表面积越大,而且火焰传播时活性中间产物碰壁销毁的机率增大,燃烧传播速度将越小,发生回火的可能性越小。管子直径小于某一值时,燃烧将不能传播,这一直径为燃烧传播临界直径或者熄灭直径。实际应用:烟气取样管的直径应小于熄灭直径,以免烟气中的可燃成分在取样管中继续燃烧而不能反映取样点的真实成分。13.湍流火焰前沿传播理论主要有哪些?基本内容和观点是什么?湍流火焰前沿传播理论主要有皱折表面燃烧理论和容积燃烧理论。皱折表面燃烧理论:在湍流火焰中,有许多大小不同的微团在不规则的运动,根据这些微团的平均尺寸大小 L 和可燃

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号