叶绿素荧光研究背景知识介绍

上传人:豆浆 文档编号:30744071 上传时间:2018-02-01 格式:DOC 页数:7 大小:160KB
返回 下载 相关 举报
叶绿素荧光研究背景知识介绍_第1页
第1页 / 共7页
叶绿素荧光研究背景知识介绍_第2页
第2页 / 共7页
叶绿素荧光研究背景知识介绍_第3页
第3页 / 共7页
叶绿素荧光研究背景知识介绍_第4页
第4页 / 共7页
叶绿素荧光研究背景知识介绍_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《叶绿素荧光研究背景知识介绍》由会员分享,可在线阅读,更多相关《叶绿素荧光研究背景知识介绍(7页珍藏版)》请在金锄头文库上搜索。

1、Gene Company Limited基因有限公司1叶绿素荧光研究背景知识介绍前言近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。荧光测量基础植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素

2、荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的

3、,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下 )存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。为什么荧光产量会发生改变?Kautsky 效应和 Beyond叶绿素荧光产量的变化最早在 1960 年被 Kautsky 和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在 1 秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少 )。一旦 PSII 吸收光能,初级电子受体 QA(质体醌)接受了电子,它将不

4、能再接受电子,直到它把电子传递给下一级电子载体 QB。此期间,反应中心是关闭的,反应中心关闭Gene Company Limited基因有限公司2的比例导致光化学效率的整体下降,进而造成荧光产量的增长。当叶片从黑暗条件转入光下,PSII(光系统 2)反应中心逐渐关闭,这造成了叶绿素荧光产量(1 秒钟之内) 的上升,在此之后,荧光产量开始下降,持续大约几分钟或几十分钟,这种现象,被称为荧光淬灭。首先,电子被从 PSII 传递走的速率开始上升,这是由于光诱导对 C 代谢酶的活化和气孔开放的活化,这种淬灭被称为光化学淬灭。同时,能量转化为热能的效率也提高了,这种过程被称为“非光化学淬灭”(NPQ)。

5、典型植物中,这两个过程变化将在 15-20 分钟内完成并达到稳定状态。当然这种时间在不同的植物种类之间差异明显。荧光信号分析为了通过叶绿素荧光产量的测量来获得植物光合性能的有用信息,我们有必要区分光化学过程与非光化学过程对淬灭的贡献的差异。通常的方法是关闭两者之一,尤其是光化学过程,这样我们就可以测量另外一种情况的影响。传统的方法是加入化学物质,如敌草隆(DCMU),这种物质抑制 PSII 活动,从而把光化学降到零。现在的方法是“加光” 技术,即它允许光化学淬灭的贡献瞬时减低到零。这种方法中,使用了高光强的短持续时间的光线(光脉冲,一般在 0.8 秒左右),这种方法可以在瞬间关闭 PSII 反

6、映中心。假如这种闪光脉冲时间足够短的话,没有非光化学淬灭的发生,同时也没有诱导光化学效率的长期变化,那么在闪光期间,此时的荧光产量相当于没有光化学淬灭时达到的最大荧光(Fm)。如果我们把光照下荧光稳定状态 (Fs)和活化光不存在下荧光产量的数值(Fo)相比较,我们就得出了光化学淬灭效率(可以理解为 PSII 的性能) 的信息。随着光化学效率的变化,热耗散(非光化学效率) 效率也发生了改变,这取决于多种内部和外部因素。这种变化可以通过 Fm 值的变化来体现,和光化学淬灭不同,我们不可能阻断热耗散的发生,因此不可能测量非光化学淬灭不存在的时候叶绿素荧光的产量。因此,所有非光化学淬灭的估计严格对应于

7、暗适应点(Fm o)。由于这个原因,我们有必要设计这样一种实验,通过这种实验,我们可以估计暗适应的非胁迫的参考点。这种需求是野外条件(通常估计 Fm 的黎明前的值) 的主要限制。淬灭分析测量过程可以通过图 1 来很好地解释。测量开始时首先打开测量光,测量最小荧光信号(Fo),然后给一个强闪光,测量暗适应状态的最大荧光(Fm o)。紧接着,打开活化光进行持续光照(或者利用野外自然光线进行照射),并且每隔一个间隔,重复一次饱和闪光照射,通过这个过程,光照下的最大荧光 Fm可以测量到。闪光之前的稳态荧光称为 Fs,闪光后,关掉活化光 (同时给一个瞬时的远红外光线照射) 可以测量 Fo。图 1 典型荧

8、光测量顺序Gene Company Limited基因有限公司3表 1 通常使用的荧光参数光化学淬灭参数PSIIPSII 的量子产量 Fm-Fs/FmQP PSII 开放比例 (Fm-Fs)/(Fm-Fo)Fv/Fm PSII 最大量子产量 (Fm-Fo)/Fm非光化学淬灭参数NPQ 非光化学淬灭 ( Fmo-Fm )/FmNPQF 快速弛豫的非光化学淬灭 ( Fmo/Fm )-( Fmo/Fmr )NPQS 慢速弛豫的非光化学淬灭 ( Fmo-Fmr ) /Fmr光化学过程光化学淬灭参数总是和 Fm和 Fs 的值相关的。最有用的信息是 PSII 光化学效率( PSII)。这个参数测量了与 P

9、SII 相关的叶绿素吸收的光用于光化学过程的比例。它可以提供线性电子传递的速率测量(整个光合的指示)。在实验室条件下,这个参数与 C 固定的效率有显著的线性关系,然而这两个参数在一定的胁迫条件下会存在差异,这是由于光呼吸速率或 Pseudocyclic 电子传递速率的改变。由于 PSII 是 PSII 光化学的量子产量,它可以用于计算线性电子传递速率(J),因此,光合速率可以描述为:J= PSIIPFDa0.5这里 PFDa 是吸收的光强(molm -2s-1),0.5 是在 PSII 和 PSI 之间能量的分配系数。另外一个广泛应用的参数是光化学淬灭 qP。尽管与 PSII 很相似,但是 q

10、P 是 PSII 反应中心开放的比例,相反1-qP 是反应中心关闭的比例。 PSII 和 qP 都和 Fv/Fm(PSII 内禀效率,即所有 PSI 反应中心全部开放)相关联。Fv/Fm=(Fm-Fo)/Fm= PSII/qP。qP 的变化由于饱和光导致的反映中心的关闭。Fv/Fm 的变化是由于非光化学淬灭的效率的变化。暗适应的 Fv/Fm 反应了潜在的 PSII 的量子效率,可以用于植物光合能力的灵敏的指示,绝大多数植物在 0.83 左右。低于此值将说明植物处于胁迫,尤其是光抑制现象。qP 和 Fv/Fm 估计的困难在于需要估计测量时的 Fo 值。在实验室中,这通常可以通过遮挡植物叶片和远红

11、外光线照射几秒种。后者可以确保所有 PSII 反应中心迅速开放。然而在野外的条件下,遮光仍然存在困难,一般是通过黑布瞬时遮光并同步提供远红外光线照射。非光化学过程需要暗适应的问题在量化非光化学淬灭时依然存在。需要测量 Fm 的暗适应值。这个值在实验室通常采取 24 小时的暗适应,而且在实验开始之前不能存在任何胁迫。这个过程是为了获得光化学效率最大,热耗散最小的 Fm 的参考值。可以在黎明前测量 Fm 值并用做参考值,黎明前 Fv/Fm 的变化可以说明环境胁迫对植物的影响。量化非光化学淬灭的最直接的方法是 Fm 的改变除以 Fm 的值:NPQ=(Fmo-Fm)/FmNPQ 和热耗散线性相关,其范

12、围大致在 0-具体的数字。在一个典型植物中,在饱和光强下大致在 0.5-3.5 之间。这取决于物种和植物以前的经历过程。qN 是非光化学淬灭的比较传统的(老的)术语,Gene Company Limited基因有限公司4有的时候也会被用到。它的范围在 0-1 之间,因此在淬灭较高时不很敏感。同样的淬灭在参考点淬灭较高时可能会表现为很小的上升,因此直接的比较不很明确。通常,如果暗适应的 Fv/Fm 明显不同,那么 NPQ 也不能直接进行比较。一般而言,非光化学淬灭的增长可能是由于叶片为免受光破坏的保护机制。研究此过程的一种方法是照光后弛豫的速率。不同的过程有不同的弛豫速率。其时间范围从几分钟到几

13、个小时。这些不同过程的弛豫(Relaxation) 动力学用于区分他们。绝大多数条件下,对 NPQ 的主要贡献,是高能状态淬灭(也被成为 qE),也被认为在保护叶片免受光诱导破坏的过程中是必须的。当叶片转入黑暗时,高能状态淬灭在几分钟内弛豫。第二个过程称为状态转化,范围为几分钟(qT) 。状态转化涉及捕光蛋白可逆磷酸化过程,被认为在低光条件下平衡光能在 PSI 和 PSII 之间的分配中非常重要。这两种形式不容易通过弛豫动力学中分离出来。然而 qT通常只对整个淬灭起到很小的贡献而且仅在低光下存在。一般认为,几分钟内的弛豫过程都被认为是蛋白磷酸化过程。较长时间尺度的弛豫过程通常归因于光抑制(qI

14、)。为更好地理解快速与慢速淬灭的贡献,我们需要进行弛豫分析来测量。实验中,淬灭执行弛豫,在固定间隔内测量 Fm 的值,间隔选择非常重要,因为,必须保证前一次闪光在间隔期内被充分弛豫。一般而言,5 分钟的间隔是充足的,整个弛豫的持续时间在 45-60 分钟之间。在此基础上做图,横坐标是时间,纵坐标是 Fm。数据点可以推断至活化光被关闭的时间。如果在光下仅存在慢速弛豫淬灭,就可以计算 Fm(Fmr)的值。慢速和快速弛豫淬灭可以通过以下公式计算:NPQs=(Fmo-Fmr)/FmrNPQF=(Fmo/Fm)-(Fmo/Fmr)NPQ 的程度和组分已经被成功用于研究不同基因型和不同表现型之间光保护和光

15、抑制的差别。研究表明,基因型之间在 NPQ 方面存在差异。在高光生长下和低光条件下不同生态型的 qE 更高。Gene Company Limited基因有限公司5这样的测量过程在野外不可能实现,一般方法是在关闭光源 2-5 分钟后单一的闪光来用于估计Fmr。5 分钟后,可能快速弛豫仍然存在,所以此时会造成 NPQF 的低估和 NPQs 的高估。而在野外条件下 30 分钟后的闪光可以给出足够的 Fmr 的估计。Fmr 称为可恢复的最大荧光产量。它的获得是在活化光诱导达到光下最大荧光平稳时,关闭活化光,测量 Fo后,把饱和光的闪光延长到 180 秒/次。得到一组逐渐增大的最大荧光产量,将该组最大荧

16、光产量放在半对数坐标系中即成直线,该直线在 Y 轴上的截距即为 Fmr。以(Fm-Fm r)/ Fmr 可以反映不可逆的非光化学淬灭产率,即发生光抑制的可能程度。荧光诱导动力学用于分析叶片从黑暗中转入光下造成的荧光上升动力学。此种方法的优点主要在于他可以使用比较廉价的非调制荧光仪。这种研究方法目前还存在争议,需要更多的理论支持。叶绿素荧光的研究范围叶绿素荧光可以给出光系统 2 的状态信息。它可以说明光系统 2 使用叶绿素吸收能量的程度和它被过量光线破坏的程度。这看起来好象只对那些对光系统 2 感兴趣的专家才有意义,其实它对于植物生理学家更有意义。通过光系统 2 的电子流动在许多条件下很明显是整个光合的速率。它提供我们在其他方法无法实现的情况下,快速估计植物光合能力的潜在能力。光系统 2 也被认为是光合机构中对光诱导破坏最为脆弱的部分。光系统 2 的破坏是植物叶片胁迫的最早的表现。当然,荧光技术本身也不是没有局限的,荧光的最强有力的应用不是单独使用这一技术,而是结合其他技术,尤其

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号