第4章 化油器式汽油机燃料供给系构造与检修

上传人:oq****t 文档编号:1980319 上传时间:2017-07-18 格式:PPT 页数:68 大小:1.97MB
返回 下载 相关 举报
第4章  化油器式汽油机燃料供给系构造与检修_第1页
第1页 / 共68页
第4章  化油器式汽油机燃料供给系构造与检修_第2页
第2页 / 共68页
第4章  化油器式汽油机燃料供给系构造与检修_第3页
第3页 / 共68页
第4章  化油器式汽油机燃料供给系构造与检修_第4页
第4页 / 共68页
第4章  化油器式汽油机燃料供给系构造与检修_第5页
第5页 / 共68页
点击查看更多>>
资源描述

《第4章 化油器式汽油机燃料供给系构造与检修》由会员分享,可在线阅读,更多相关《第4章 化油器式汽油机燃料供给系构造与检修(68页珍藏版)》请在金锄头文库上搜索。

1、学习目标:1. 了解汽油机的燃烧过程。2掌握汽油机可燃混合气的形成方法以及发动机各种工 况对混合气成分的要求。3掌握化油器式燃料供给系的分类和工作过程。4能正确描述化油器式燃料供给系组成、主要零部件构 造和作用。5能对化油器式燃料供给系主要零部件进行检修。6会进行化油器、汽油泵的装配和调整。7. 了解空气滤清器及进、排气装置的构成和作用; 。,第4章 化油器式汽油机燃料供给系的构造与检修,1、汽油机燃料供给系的功用 汽油机燃料供给系的作用是贮存、输送、清洁燃料,根据发动机不同工况的要求,配制一定数量和浓度的可燃混合气进入气缸,并在燃烧作功后,将燃烧产生的废气排至大气中。 汽油在燃烧前必须与空气

2、形成可燃混合气。可燃混合气是按一定比例混合的汽油与空气的混合物。可燃混合气中燃料含量的多少称为可燃混合气浓度。 可燃混合气浓度有两种表示方法:过量空气系数和空燃比A/F。过量空气系数是理论上燃烧1kg燃料实际供给的空气质量与理论上完全燃烧时所需要的空气质量之比。由此可知,=1的可燃混合气称为标准混合气;1的可燃混合气称为浓混合气;1的可燃混合气称为稀混合气。 空燃比是燃烧时空气质量与燃料质量之比。理论上,1kg汽油完全燃烧需要14.7kg空气,故空燃比A/F=14.7可燃混合气称为标准混合气;A/F14.7可燃混合气称为浓混合气;A/F14.7可燃混合气称为稀混合气。,4.1 概述,4.1.1

3、 汽油机燃料供给系的功用与组成,2、汽油机燃料供给系的组成 汽油机燃料供给系如图4.1所示,主要由以下装置组成。(1)燃料供给装置。包括汽油箱、汽油滤清器、汽油泵和油管等,完成汽油的贮存、输送、滤清任务。(2)空气供给装置。即空气滤清器(某些发动机上还装有进气预热装置)。(3)可燃混合气配制装置。即化油器。(4)可燃混合气供给和废气排出装置。包括进气管、排气管和排气消声器。,4.1 概述,4.1.1 汽油机燃料供给系的功用与组成,汽油在汽油泵的泵吸作用下,从汽油箱经油管泵入化油器中。空气则经空气滤清器滤去所含灰尘后,进入化油器。在气缸吸气气流的作用下,汽油从化油器中喷出,与空气混合开始雾化,经

4、进气管进一步蒸发,初步形成可燃混合气,进入各个气缸。混合气燃烧产生的废气,经排气管和消声器被排入大气。,4.1 概述,4.1.1 汽油机燃料供给系的功用与组成,1、简单化油器结构 图4.3所示为简单化油器结构简图。它由浮子机构、喷管、量孔、喉管、节气门、空气室和混合室等组成。(1)浮子机构。由浮子、针阀和浮子室组成。浮子室用来贮存来自汽油泵的汽油,上部有孔与大气相通;浮子和针阀可一同随油面起落,用来保持浮子室油面高度恒定。(2)喷管和量孔。喷管的出油口在喉管的附近。喷管口略高出浮子室液面,燃料不会自动流出。喷管另一端与浮子室相通。浮子室内装有油量孔,通过量孔的汽油流量大小取决于量孔的直径和量孔

5、前后压力差的大小。(3) 喉管。空气管中截面积沿轴向变化的细腰管,其面积最小处称喉部。喷管的喷口位于喉部。喉管的作用是改变气流流通截面。当流体在变截面管道中流动时,截面越小处其流速越大,而静压力越低。由于喉部截面最小,空气流速最大,静压力最低,可形成真空吸力,使汽油从喷管内喷出,利用空气流速将喷出的汽油吹散雾化。,4.1 概述,4.1.2 简单化油器,(4) 空气室和混合室。喉管内喉部以上为空气室,喉部以下到节气门轴为混合室。混合室是汽油被空气初步粉碎并与之混合的场所。(5) 节气门。通常为一椭圆形的片状阀门,可绕其短轴转动一定角度。节气门通过杆件与驾驶室内的加速踏板相连,可用来调节发动机功率

6、。当节气门全开时,进气管路中阻力最小,喉部真空度最大,从喷管流出的油量也最大,发动机在大功率下工作;随节气门关小,节气门处通过截面变小,阻力增大,进气量减少,喉部真空度也减小,从喷管流出的汽油也随之减少,发动机功率随之下降。,4.1 概述,4.1.2 简单化油器,2、简单化油器工作原理 当发动机工作时,进气行程中活塞由上止点下行,气缸容积增大,压力下降,产生吸力。进气门开启,气缸中的吸力将空气经空气滤清器吸入化油器。当空气流经喉管时,由于喉管通道狭窄使空气流速加快,压力下降,在浮子室内和喉管口处产生压力差,即喉部真空度Ph=P0-Ph,在真空度作用下,浮子室中的汽油从喷管喷出,随即被高速空气流

7、冲散,成为大小不等的雾状颗粒(雾化)。雾化的汽油在混合室中开始与空气混合,经进气管进入气缸形成混合气。在此期间,汽油与空气不停地进行吸热、蒸发汽化与混合,直至压缩行程接近终了,形成良好的可燃混合气。,4.1 概述,4.1.2 简单化油器,3、简单化油器特性 在转速一定时,简单化油器的可燃混合气成分随节气门开度变化的关系称为简单化油器特性。从以上分析可知,节气门开度变化时,进入气缸的混合气浓度和数量均会变化,当发动机转速一定,节气门开度逐渐增大时,其结果是空气流量与汽油流量一同增大。实验证明,对于简单化油器节气门在大开度范围内变化时,汽油流量的增加量比空气流量的增长率大得多、因而可燃混合气明显地

8、由稀变浓。再继续加大节气门开度,两者的比率逐渐接近,可燃混合气浓度也趋于稳定,其变化规律如图4.4所示。,4.1 概述,4.1.2 简单化油器,1、稳定工况对混合气成分的要求 (1)怠速工况 怠速是指发动机对外无功率输出,作功行程产生的动力只用以克服发动机的内部阻力,使发动机保持最低转速稳定运转。汽油机怠速转速一般为400800r/mm,转速很低,化油器内空气流速也低,使得汽油雾化不良,与空气的混合也很不均匀。另一方面,节气门开度很小,吸入气缸内的可燃混合气量很少,同时又受到气缸内残余废气的冲淡作用,使混合气的燃烧速度变慢,因而发动机动力不足、燃烧不良甚至熄火。因此要求提供较浓的混合气=0.6

9、0.8 。(2)小负荷工况 发动机负荷在25以下称为汪负荷。小负荷时,节气门开度较小,进入气缸内的可燃混合气量较少,而上一循环残留在气缸中的废气在气缸内气体中气占的比例相对较多,不利于燃烧,因此必须供给较浓的可燃混合气=0.70.9。 (3)中等负荷工况 发动机负荷在2585之间称为中等负荷。发动机大部分工作时间处于中等负荷工况,所以经济性要求为主。中等负荷时,节气门开度中等,故应供给接近于相应耗油率最小的值的混合气,即经济混合气成分=0.91.1,这样,功率损失不多,节油效果却很显著。 (4)大负荷及全负荷工况 发动机负荷在85100之间称为大负荷及全负荷。此时应以动力性为前提,要求发出最大

10、功率Pemax,故要求化油器供给Pemax时的混合气成分=0.850.95。,4.1 概述,4.1.3 车用发动机对可燃混合气成分的要求,2、过渡工况对混合气成分的要求(1)冷起动工况 发动机冷起动时,混合气得不到足够地预热,汽油蒸发困难。同时,发动机曲轴转速低,因而被吸入化油器喉管内的空气流速较低,难以在喉管处产生足够的真空度使汽油喷出。既使是从喉管流出汽油,也不能受到强烈气流的冲击而雾化,绝大部分呈油粒状态。混合气中的油粒会因为与冷金属接触而凝结在进气管壁上,不能随气流进入气缸,因而使气缸内的混合气过稀,无法引燃。因此,要求化油器供给极浓的混合气进行补偿,从而使进入气缸的混合气有足够的汽油

11、蒸汽,以保证发动机得以起动。冷起动工况要求供给的混合气成分为=0.20.6。(2)暖机工况 暖机是指发动机冷起动后,各气缸开始依次点火而自行继续运转,使发动机的温度逐渐升高到正常值,发动机能稳定地进行怠速运转的过程。在此期间,混合气的浓度随温度升高而减小,从起动时的极浓减小到稳定怠速运转所要求的浓度为止。(3)加速工况 发动机的加速是指负荷突然迅速增加的过程。当驾驶员猛踩踏板时,节气门开度突然加大,此时空气流量和流速以及喉管真空度均随之增大,汽油供油量也有所增大。但由于汽油的惯性大于空气的惯性,汽油来不及足够地从喷口喷出,瞬时汽油流量的增加比空气的增加要小得多,致使混合气过稀。另外,在节气门急

12、开时,进气管内压力骤然升高,同时由于冷空气来不及预热,使进气管内温度降低,不利于汽油的蒸发,致使汽油的蒸发量减少,造成混合气过稀。结果就会导致发动机不能实现立即加速,甚至有时还会发生熄火现象。 为了改善这种情况,必须在化油器节气门突然开大时,强制多供油,额外增加供油量,及时使混合气加浓到足够的程度。,4.1 概述,4.1.3 车用发动机对可燃混合气成分的要求,3、理想化油器特性 在转速一定时,汽车发动机所要求的混合气成分随节气门开度变化的关系称为理想化油器特性,如图4.5所示。 由图可以看出,理想化油器特性与简单化油器特性正好相反,简单化油器不能满足发动机实际工作时对可燃混合气成分的要求。因此

13、,现代化油器在简单化油器的基础上,加装了一系列自动调配混合气浓度的装置,以保证车用汽油机在各种工况下都能供给适当浓度的混合气,满足发动机工作的需要。,4.1 概述,4.1.3 车用发动机对可燃混合气成分的要求,1、主供油装置 主供油装置的作用是保证发动机在中、小负荷工作时,供给随节气门开度加大而逐渐变稀的混合气(=0.85-1.1)。(1)构造 为了将简单化油器供给的随节气门开度增大逐渐变浓的混合气校正到随节气门开度增大而逐渐变稀的混合气,曾采用过多种结构措施来调节燃油量或空气量,目前广泛采用降低主量孔外面真空度的方案。即在简单化油器的基础上,加装空气室(又称油井)和空气量孔,以降低主量孔吸油

14、真空度,如图4.6所示。 空气室内装有直立内吹式泡沫管,管的上端有空气量孔,中部有24排渗气孔,空气室分别和大气、浮子室、喉管相通。,4.2可燃混合气配制装置-化油器的构造与检修,4.2.1 现代化油器基本结构,(2)工作情况 当发动机不工作时,主喷管、空气室、浮子室中的油面是等高的。当发动机进入中小负荷时,喉管处产生吸力而喷油,由于喷管喷口尺寸大于主量孔直径,空气室内出现“供不应求的现象,油面迅速下降,空气自空气量孔和泡沫管中的渗气孔进入空气室。此时,喷口喷出的不再是液体,而是被吹成泡沫状的油气混合物;由于通过空气量孔的空气开始流动,产生压力损失,故主量孔前的压力变为Pk,它小于大气压力Po

15、而大于喉管压力Ph,这时决定通过主量孔汽油流量的压力差不再是Ph=Po-Ph,而是Pk= Po-Pk(油面差h忽略不计),所以燃油流量比没有空气量孔时少,混合气也就变稀。 由此可见,降低主量孔真空度的实质是引入极少量的空气到主量孔中,降低主量孔处内外的压力差,从而降低汽油的流速和流量。同时又使汽油泡沫化,在从主喷口喷入喉管之后更容易被空气流吹散,以利于燃油的蒸发、混合和燃烧。,4.2可燃混合气配制装置-化油器的构造与检修,4.2.1 现代化油器基本结构,2、怠速装置 怠速装置的作用是保证发动机在怠速和极小负荷时供给浓而少的混合气(= 0.6 0.8 )。多在发动机冷起动后的暖机过程、短暂停车、

16、更换变速器档位时短时间工作。(1)构造 怠速时,节气门接近全关,主喷管处真空度很低,节气门后面的真空度却很高。为此,在简单化油器的基础上,另设怠速油道和喷孔,如图4.7所示。图4.7 怠速装置 它由怠速喷口、怠速调整螺钉、过渡喷口、怠速油量孔、怠速空气量孔、怠速油道和节气门开度限止螺钉等组成。,4.2可燃混合气配制装置-化油器的构造与检修,4.2.1 现代化油器基本结构,(2)工作情况低怠速时,节气门开度最小,处在怠速喷口和过渡喷口之间。此时,主供油装置因喉管处真空度太小不能出油,而怠速喷口位于节气门的下方,具有很大的真空度。汽油从浮子室被吸出经主量孔、怠速油量孔流入怠速油道,与从怠速空气量孔

17、进入的空气混合,形成泡沫状油液,从怠速喷口喷出。喷出的泡沫状油液受节气门边缘高速气流的冲击,进一步得到雾化。由于怠速喷口处真空度较大,汽油流出相对较多,而经空气量孔和节气门边缘流入的空气则很少,从而保证了怠速工况时需要少而浓的混合气的需要。由于有少量空气从怠速空气量孔渗入怠速油道,故怠速油道真空度Pxx=Po-Pxx小于节气门后方真空度Px=Po-Px,这样可使怠速油量孔尺寸稍加大,以防堵塞。高怠速时,节气门稍开大,处在过渡喷口之上,进入高怠速状态,此时空气量增多,节气门下方的两个喷孔同时喷油,混合气不至于瞬时变稀,保证了过渡圆滑。节气门开度再加大时,即进入小负荷状态,主供油装置即开始少量供油,怠速喷口、怠速过渡喷口也还在喷油,瞬时出现“三孔喷油”的局面,使过渡性能更为理想。节气门再开大,由于节气门下方真空度减小,怠速喷口停止供油,由主供油装置单独供油,进入了中小负荷工况。,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号