现代防雷技术第一章 雷电及其参数

上传人:资****亨 文档编号:182715305 上传时间:2021-05-20 格式:PPT 页数:45 大小:2.28MB
返回 下载 相关 举报
现代防雷技术第一章 雷电及其参数_第1页
第1页 / 共45页
现代防雷技术第一章 雷电及其参数_第2页
第2页 / 共45页
现代防雷技术第一章 雷电及其参数_第3页
第3页 / 共45页
现代防雷技术第一章 雷电及其参数_第4页
第4页 / 共45页
现代防雷技术第一章 雷电及其参数_第5页
第5页 / 共45页
点击查看更多>>
资源描述

《现代防雷技术第一章 雷电及其参数》由会员分享,可在线阅读,更多相关《现代防雷技术第一章 雷电及其参数(45页珍藏版)》请在金锄头文库上搜索。

1、.,第一章 雷电及其参数,雷电是大自然中最宏伟和恐怖的气体放电现象。对雷电的物理本质了解始于18世纪,最有名的当属美国的富兰克林和俄国的罗蒙诺索夫。富兰克林在18世纪中期提出了雷电是大气中的火花放电,首次阐述了避雷针的原理并进行了试验;罗蒙诺索夫则提出了关于乌云起电的学说。近几十年来,由于雷电放电对于现代航空、电力、通信、建筑等领域都有很大的影响,促使人们从20世纪30年代开始加强了对雷电及其防护技术的研究,特别是利用高速摄影、数字记录、雷电定向定位等现代测量技术所作的实测研究的成果,大大丰富了人们对雷电的认识。,第一节 雷云的产生和雷电放电过程,1.1.1 雷电发生机理,.,雷电是由雷云放电

2、引起的,关于雷云的聚集和带电至今还没有令人满意的解释,目前比较普遍的看法是:热气流上升时冷凝产生冰晶,气流中的冰晶碰撞后分裂导致较轻的部分带负电荷并被风吹走形成大块的雷云;较重的部分带正电荷并可能凝聚成水滴下降,它们在重力作用下下落的速度大,并在下落过程中与其他水份粒子发生碰撞,结果一部分被另一水生成物捕获,增大水成物的体积,另一部分云粒子被反弹回去,这些反弹回去的云粒子通常带正电荷,悬浮在空中形成一些局部带正电的云区,而水生成物带上负电荷。由于水成物下降的速度快,而云粒子的下降速度慢,因而正、负电荷的微粒逐惭分离,最后形成带正电的云粒在云的上部,而带负电的水成物在云的下部。整块雷云里边可以有

3、若干个电荷中心。负电荷中心,离地大约50010000m。它在地面上感应出大量的正电荷。 随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对大地的火花放电。雷电放电包括雷云对大地,雷云对雷云和雷云内部的放电现象。大多数雷云放电都是在雷点与雷云之间进行的,只有少数是对地进行的。在防雷工程中,主要关心的是雷云对大地的放电,如图1-1所示。,.,图1-1云对地放电,雷云对大地放电通常分为先导放电、主放电和辉光放电三个阶段。云一地之间的线状雷电在开始时往往从雷云边缘向地面发展,以逐级推进方式向下发展。每级长

4、度约10200m,每级的伸展速度约107m/s,各级之间有10100s的停歇,所以平均发展速度只有(18)105m/s,这种放电称为先导放电,如图1-3所示。当先导接近地面时,地面上一些高耸的物体(如塔尖或山顶)因周围电场强度达到了能使空气电离的程度,会发出向上的迎面先导。当它与下行先导相遇时,就出现了强烈的电荷中和过程,出现极大的电流(数十到数百千安),伴随着雷鸣和闪光,这就是雷电的主放电阶段。主放电的过程极短,只有50100s,它是沿着负的下行先导通道,由下而上逆向发展,故又称“回击”,其速度高达21071.5108m/s。以上是负电荷雷云对地放电的基本过程,可称为下行负雷闪;对应于正电荷

5、雷云对地放电的下行正雷闪所占的比例很小,其发展过程亦基本相似。主放电完成后,云中剩余的电荷沿着原来的主放电通道继续流入大地,看到的是一片模糊的发光,这就是辉光放电。,.,以上是负电荷雷云对地放电的基本过程,可称为下行负雷闪;对应于正电荷雷云对地放电的下行正雷闪所占的比例很小,其发展过程亦基本相似。主放电完成后,云中剩余的电荷沿着原来的主放电通道继续流入大地,看到的是一片模糊的发光,这就是辉光放电。 从旋转相机拍下的光学照片显示,大多数云对地雷击是重复的,即在第一次雷击形成的放电通道中,会有多次放电尾随,放电之间的间隔大约为0.5500ms。主要原因是:在雷云带电的过程中,在云中可形成若干个密度

6、较高的电荷中心,第一次先导一主放电冲击泄放的主要是第一个电荷中心的电荷。在第一次冲击完成之后,主放电通道暂时还保持高于周围大气的电导率,别的电荷中心将沿已有的主放电通道对地放电,从而形成多重雷击。第二次及以后的放电,先导都是自上而下连续发展的,没有停顿现象。放电的数目平均为23次,最多观测到42次。通常第一次冲击放电的电流最大,以后的电流幅值都比较小。图1-2所示为用旋转相机和高压示波器拍摄和记录的负雷云对地放电的典型过程和电流波形。,.,若地面上存在特别高的导电性能良好的接地物体时,也可能首先从该物体顶端出发,发展向上的先导,称上行雷。但上行雷先导到达雷云时,一般不会发生主放电进程,这是因为

7、雷云的导电性能比大地差得多,难以在极短的时间内提供为中和先导通道中电荷所需要的主放电电流,而只能向雷云深处发展多分支的云中先导。通过宽广区域的电晕流洼,从分散的水性质点上卸下电荷,汇集起来,以中和上行先导中的部分电荷。这样电流放电过程显然只能是较缓和的,而不可能有大冲击电流的特性。其放电电流一般不足千安,而延续时间则较长,可能长达10-1s。此外,上行先导从一开始就出现分支的概率较大。,.,1.1.2雷击时的等值电路 雷击地面发生主放电的开始,可以用图1-3中开关S的闭合来表示。图中Z是被击物与大地(零电位)之间的阻抗,是先导放电通道中电荷的线密度,S闭合之前相当于先导放电阶段。S突然闭合,相

8、当于主放电开始,如图1-3(b)所示。发生主放电时,将有大量的正、负电荷沿先导通道逆向运动,并中和雷云中的负电荷。由于电荷的运动形成电流,因此雷击点A的电位也突然发生变化(u=iZ)。雷电流的大小与先导通道的电荷密度以及主放电的发展速度有关(i=v)。 在防雷研究中,最关心的是雷击点A的电位升高,而可以不考虑主放电速度、先导电荷密度及具体的雷击物理过程,因此可以从点的电位出发来把雷电放电过程简化为一个数学模型,如图1-3(c)所示;进而得到其彼得逊等值电路,如图1-3中(d)、(e)所示。图中,Z0表示雷电通道的波阻抗(我国规程建议取300400)。需要说明的是:尽管雷云有很高的初始电位才可能

9、导致主放电,但地面被击物体的电位并不取决于这一初始电位,而是取决于雷电流与被击物体阻抗的乘积。所以,从电源的性质看,雷电具有电流源的性质。,.,图1-3雷电放电模型和等值电路,在雷击点A与地中零电位面之间串接着一个阻抗,它可以代表被击中物体的接地电阻R,也可以代表被击物体的波阻抗Z。从图1-3(e)中可以看出,当Z=0时,i=2i0;若ZZ0(如Z30),仍然可得i2i0。所以国际上习惯于把流经波阻抗为零(或接近于零)的被击物体的电流称为“雷电流”。从其定义可以看出,雷电流i的幅值恰好等于沿通道Z0传来的流动电流波i0的幅值的两倍。,.,雷电放电有单通道放电,如图1-4所示,和多通道,如图1-

10、5所示,先导放电是不规则的树枝状(如图1-4所示),但它还是具有分布参数的特征,作为粗略估计一般假设它是一个具有均匀电感、电容等分布参数的导电通道,即可以假设其波阻抗是均匀的。,图1-4单通道雷电放电过程,.,图1-5多通道雷电放电,雷电放电涉及气象、地貌等自然条件,随机性很大,关于雷电特性的诸参数因此具有统计的性质,需要通过大量实测才能确定,防雷保护设计的依据即来源于这些实测数据。在防雷设计中,最关心的是雷电流波形、幅值分布及落雷密度等参数。,.,1.1.3 雷电流幅值和波形 幅值分布的概率 雷电流是单极性的脉冲波。对一般地区,我国现行标准推荐雷电流幅值分布的概率如下: (1-1) 其中,I

11、为雷电流幅值(kA);P为幅值大于I的雷电流概率。例如,当雷击时,出现幅值大于50kA雷电流的概率为33%,大于88kA的概率为10%。该公式是从1025个有效的雷电流观测数据中归纳出来的。 对年雷暴日数小于20的地区(我国除陕南以外的西北地区、内蒙古的部分地区),雷电流幅值较小,P可按下式计算: (1-2) 波形和极性 虽然雷电流的幅值随各国气象条件相差很大,但各国测得的雷电流波形却是基本一致的。根据实测统计,雷电流的波头时间大多为15s,平均为22.5s。我国的防雷规程建议雷电流的波头时间取2.6s,此时雷电流的平均波头陡度与幅值成正比,即,.,kA/s (1-3) 雷电流的波长大多为20

12、100s,平均约为50s,大于50s的仅占1830%。因此,在保护计算中,雷电流的波形可以采用2.6/50s的双指数波。 在线路防雷设计中,一般可取斜角平顶波头以简化计算,我国规程规定雷电波的波头时间采用2.6s。而在特高塔的防雷设计中,为更接近于实际,可取半余弦波头,其表达式为 (1-4) 其中,I为雷电流幅值;为角频率。 对半余弦波头,其最大陡度出现在t=f/2时,其值为平均陡度的/2倍。 根据国内外的实测统计,7590%的雷电流是负极性的。因此电气设备的防雷保护和绝缘配合一般都按负极性雷进行研究。 1.1.4 雷暴日和雷暴小时 为了表征不同地区的雷电活动频繁程度,常用年平均雷暴日作为计量

13、单位。雷暴日是一年中有雷电的天数,在一天内只要听到雷声就算一个雷暴日。我国各地雷暴日的多少和纬度及距海洋的远近有关。海南岛及广东的雷州半岛雷电活动频繁而强烈,平均年雷暴日高达100133。北回归线(北纬23.5)以南一般在80以上(但台湾省只有30左右),北纬23.5到长江一带约为4080,长江以北大部地区(包括东北)多在2040,西北多在20以下。西藏沿雅鲁藏布江一带约达5080。我国把年平均雷暴日不超过15的叫少雷区,超过40的叫多雷区,超过90的叫强雷区。在防雷设计中,要根据雷暴日的多少因地制宜。 雷暴小时是一年中有雷暴的小时数,在一小时内只要听到雷声就算一个雷电小时。据统计,我国大部分

14、地区雷暴小时与雷暴日之比约为3。 我国规程建议采用雷暴日作为计算单位。,.,北回归线(北纬23.5)以南一般在80以上(但台湾省只有30左右),北纬23.5到长江一带约为4080,长江以北大部地区(包括东北)多在2040,西北多在20以下。西藏沿雅鲁藏布江一带约达5080。我国把年平均雷暴日不超过15的叫少雷区,超过40的叫多雷区,超过90的叫强雷区。在防雷设计中,要根据雷暴日的多少因地制宜。 雷暴小时是一年中有雷暴的小时数,在一小时内只要听到雷声就算一个雷电小时。据统计,我国大部分地区雷暴小时与雷暴日之比约为3。 我国规程建议采用雷暴日作为计算单位。 1.1.5 地面落雷密度和输电线路落雷次

15、数 雷暴日和雷暴小时中,包含了雷云之间的放电,而防雷实际中关心的是云地之间的放电。地面落雷密度表征了雷云对地放电的频繁程度,其定义为每平方公里每雷暴日的对地落雷次数,用表示。世界各国根据各自的具体情况,的取值不同。根据我国标准规定,对雷暴日T=40的地区,=0.07次/平方公里雷暴日。,.,输电线路的存在,改变了雷云地之间的电场分布,有引雷作用。根据模拟试验及运行经验,线路每侧的引雷宽度为2h(h为避雷线的平均高度,m)。因此,对雷暴日T=40 地区,避雷线或导线平均高度为h的线路,每100km每年雷击的次数 次(1-5) 其中,b为两根避雷线之间的距离,m。 1.1.6 雷电冲击电压作用下气

16、体的击穿 由雷电造成冲击电压的幅值高、陡度大、作用时间极短,在冲击电压作用下空气间隙的击穿特性有着许多新的特点,并且雷电冲击电压与操作冲击电压下的特性也有很大不同。下面我们讨论在雷电冲击电压下空气间隙的击穿特性。 一、雷电冲击电压标准波形 图1-6标准雷电冲击电压波形为了检验绝缘耐受冲击电压的能力,在高压试验室中利用冲击电压发生器产生冲击电压,以模拟雷闪放电引起的过电压。过去,各国、各地不同的实验室用各自产生的冲击电压进行试验,因为波形不同,击穿电压也不同,所得结果无法互相比较。,.,为使实验结果具有可比性和实用价值,国际电工委员会(IEC)规定了雷电冲击电压的标准波形参数。标准波形是根据大量实测到的雷电冲击电压波形制订的。如图1-6所示。雷电冲击电压是非周期性指数衰减波,波形由波头时间和波尾时间加以确定。由于波形的原点较为模糊,波峰附件较为平缓,因此波形的原点和波峰的位置不易确定,为此取幅值的0.3倍和0.9倍两点连成直线,这条直线与横坐标的交点定义为视在原点,这条直线的延长线与幅值的交点定义为波峰点,从视在原点到波峰点的时间定义为视在波头时间,从视在原点到幅值的一半所对于的点定义为

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号