气相生长纳米炭纤维的研究进展

上传人:I*** 文档编号:181843005 上传时间:2021-05-06 格式:DOCX 页数:8 大小:101.58KB
返回 下载 相关 举报
气相生长纳米炭纤维的研究进展_第1页
第1页 / 共8页
气相生长纳米炭纤维的研究进展_第2页
第2页 / 共8页
气相生长纳米炭纤维的研究进展_第3页
第3页 / 共8页
气相生长纳米炭纤维的研究进展_第4页
第4页 / 共8页
气相生长纳米炭纤维的研究进展_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《气相生长纳米炭纤维的研究进展》由会员分享,可在线阅读,更多相关《气相生长纳米炭纤维的研究进展(8页珍藏版)》请在金锄头文库上搜索。

1、 气相生长纳米炭纤维的研究进展 1气相生长纳米炭纤维概述炭纤维是一种主要以sp2杂化形成的一维结构炭材料。根据其合成方式和直径不同可分为:有机前躯体炭纤维(pan基、粘胶丝基、沥青基炭纤维)、气相生长炭纤维(vapor-grown carbon fiber 简称 vgcf)、气相生长纳米炭纤维(vapor-grown carbon nanofiber 简称vgcnf)、炭纳米管(carbon nanotube 简称cnt),如图1所示。自从1991年iijima 1发现纳米炭管以来,由于其特殊的物理性能和力学性能而引起科学家们的广泛兴趣,同时也促进了气相生长炭纤维在纳米尺度上即气相生长纳米炭纤

2、维的研究。气相生长纳米炭纤维一般以过渡族金属fe、co、ni 及其合金为催化剂,以低碳烃化合物为碳源,氢气为载气,在873 k1 473 k下生成的一种纳米尺度炭纤维。它与一般气相生长炭纤维(vgcf)所不同的是,纳米炭纤维除了具有普通vgcf的特性如低密度、高比模量、高比强度、高导电等性能外,还具有缺陷数量非常少、比表面积大、导电性能好、结构致密等优点,可望用于催化剂和催化剂载体、锂离子二次电池阳极材料、双电层电容器电极、高效吸附剂、分离剂、结构增强材料等。tibbetts2在研究了vgcf的物理特性以后,发现小直径气相生长炭纤维的强度比大直径的强度要大。endo3用透射电镜观察到气相生长法

3、热解生成的炭纳米管和电弧法生成的炭纳米管的结构完全相同。所有这些,都使气相生长纳米炭纤维的研制工作进入了一个新阶段。另外,从图1的直径分布来看,纳米炭纤维处于普通气相生长炭纤维和纳米炭管之间,这决定了纳米炭纤维的结构和性能处于普通炭纤维和纳米炭管的过渡状态,因而,研究普通炭纤维、纳米炭纤维、纳米炭管的结构和性能的差异将具有重要的意义。2气相生长纳米炭纤维的制备方法与影响因素 刘华的实验结果表明vgcf的强度随着直径的减小而急剧增大4。tibbetts2在研究vgcf的物理特性时,也预测小直径的vgcf要比大直径的vgcf强度要大得多。由于vgcf的直径主要是由催化剂颗粒的大小来决定的5,因此大

4、批量生产vgcnf的关键问题是催化剂颗粒的细化。目前,vgcnf的制备主要有三种方法:基体法6,7、喷淋法或者流动催化剂法8和改进的流动催化剂法9。所谓的基体法是将石墨或陶瓷作基体,施以纳米级催化剂颗粒做“种籽”, 高温下通入碳氢气体化合物,在催化剂的作用下碳氢气体分解并在催化剂颗粒的一侧析出纳米级纤维状炭。例如,rodriguez10在基体上喷洒超细催化剂粉末,即用所谓的基体法高温降解碳氢化合物气体制备出50 nm80 nm的vgcnf。这种基体催化剂方法可以制备出高质量的vgcnf。但是,超细催化剂颗粒的制备非常困难,在基体上喷洒不均匀,而且纳米炭纤维 只在有催化剂的基体上生长,因而产量不

5、高,不可能工业化生产。tibbetts8用喷淋法或者流动催化剂法在一个垂直的炉子里成功地制备出了50 nm100 nm的vgcnf。虽然这种方法提供了大量制备vgcnf的可能性,但是由于催化剂与碳氢气体化合物的比例难以优化,喷洒过程中铁颗粒分布不均匀,且喷洒的催化剂颗粒很难以纳米级形式存在,因此在制备纤维的过程中纳米级纤维所占比例少,而且总是伴有大量的炭黑生成。为了解决以上两种方法的不足,充分利用基体法和喷淋法各自的优点,本研究小组用改进的气相流动催化剂法,在水平反应炉里,生长出10 nm100 nm的vgcnf9。改进的流动催化剂法的主要特征是,催化剂并不是附着在基体上,也不象制备vgcnf

6、所用的喷淋法或者流动催化剂法,将催化剂前驱体溶解在碳源溶液中,而是以气体形式同碳氢气体一起引入反应室,经过不同温区完成催化剂和碳氢气体的分解,分解的催化剂原子逐渐聚集成纳米级颗粒,因此分解的碳原子在催化剂上将会以纳米级形式析出纤维状炭。由于从有机化合物分解出的催化剂颗粒可以分布在三维空间内,因此其单位时间内产量可以很大,可连续生产,有利于工业化生产。影响气相生长炭纤维的因素很多,研究也较充分,如氢气的纯度、碳氢气体化合物的分压、氢气和碳氢气体化合物的比例、反应温度、催化剂(颗粒大小、形状、结晶构造)的选取、气体的流量、微量元素的添加(如s)等都会影响到vgcf的生长。由于vgcnf和vgcf一

7、样也是双层结构,即由两种不同结构的炭组成,内部是结晶程度比较好、具有理想石墨结构、中间空心的初期纤维;外层是结晶程度比较差、具有乱层结构的热解炭层9。因此,影响气相生长炭纤维的因素,也将影响着vgcnf的生长。(1) 氢气除了作载气外,还用以将fe、co、ni等的金属化合物还原成为起催化作用的fe、co、ni等单质。另外,还具有下列作用:(a)h2在金属表面上的化学吸附可以阻止石墨炭层的凝聚反应;(b)h2在金属表面上的化学吸附也可以弱化金属与金属间的结合力,使金属颗粒的大小适合于生长炭纤维10;(c)h2的存在也可以使催化剂颗粒重构,以形成可以大量吸附碳氢化合物的表面11。(2) 其它元素如

8、硫的加入对vgcf的生长也产生很大影响,kim12在研究硫的吸附与碳在co做催化剂析出时的相关作用时发现:少量的硫可以促进金属表面的重构,防止催化剂失活。硫量过大,则会生成过多的硫化物,抑制催化剂的催化活性。另外,少量的硫也可以促进催化剂颗粒分裂,这对于生长高质量的纳米级vgcf具有非常重要的作用。(3) 为了高效率生长vgcnf,催化剂一直是研究的热点。baker发现在铁磁性金属中添加第二种金属可以改变炭纤维的生长特性,产生非常高的有序结构13,生长多种形态的炭纤维。而且可以减少催化剂颗粒直径,vgcf的产量和生长速率也有所提高14。人们也发现往过渡族金属(fe、 co、 ni) 中引入第二

9、种金属同样也能影响vgcnf的形貌和特性6, 7.chambers 等 在研究往co里加入cu对vgcnf的结构和性能的影响后, 发现所制备的vgcnf具有非常高的结晶性7。另外, rodriguez 6用纯铁作催化剂制备出石墨片层平行于纤维轴向的ribbon 型的纳米炭纤维; 用fe-cu (7:3)作催化剂制备出石墨片层与纤维轴向呈一定角度的 herringbone 型的纳米炭纤维; 用硅基铁作催化剂制备出石墨片层垂直于纤维轴向的纳米炭纤维。所有这些现象都说明了催化剂颗粒的特性影响着纳米炭纤维的生长。总之,氢气的分压、催化剂的选取、碳氢化合物的流量、微量元素的加入都会影响炭纤维的生长,对于

10、vgcnf的制备,所有这些因素都必须加以考虑。3气相生长纳米炭纤维的生长机理一般认为,vgcnf与vgcf一样是由两种不同结构的炭组成的,内层是结晶比较好的石墨片层结构(即纳米炭管),外层是一层很薄的热解炭,中间是中空管。这些结构特性决定了vgcnf两个不同的生长历程。即先是在催化剂表面气相生长纳米纤维,然后是在其上面热解炭沉积过程。其中,在催化剂表面气相生长纳米炭纤维可以分为以下几个过程:(1) 碳氢气体化合物在催化剂表面的吸附;(2) 吸附的碳氢化合物催化热解并析出碳;(3) 碳在催化剂颗粒中的扩散;(4) 碳在催化剂颗粒另一侧的析出,纤维生长;(5) 催化剂颗粒失活,纤维停止生长。目前,

11、世界各国的科学家对vgcnf的生长机理还没有一个统一的认识,在许多方面还有争议。例如:碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力;真正起催化作用的是金属单质还是金属碳化物至今也是一个争论的焦点。oberlin 5用fe-苯-h2体系生成了vgcf,并对催化剂颗粒的电子衍射进行分析,发现有渗碳体fe3c的存在。audier15用选区电子衍射技术也发现了fe5c2和fe3c的存在。baker16在研究了各种fe的氧化物和碳化物的反应活性之后不同意渗碳体有催化活性的观点。当用很高浓度的渗碳体做催化剂时,没有发现炭纤维生长。NextPageyang在研究h2对碳降解的作用时发现,

12、fe3c表面对苯的热解无活性,通h2后恢复了金属性,则生长炭纤维的活性也恢复了。尽管金属碳化物有催化活性的说法与实验结果不符合,但碳化物的表面作用不可忽视。另外,碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力也是一个争论的焦点。最初,baker 16假定碳在催化剂颗粒中的扩散是靠温度梯度为推动力的。碳氢气体化合物在催化剂颗粒一侧放热分解,而在另一侧吸热析出。这样,就在催化剂颗粒中存在一个温度差,从碳氢气体化合物分解出的碳原子在这种温度梯度的作用下从催化剂颗粒的另一侧析出,生长炭纤维。而holstein 18则认为碳在催化剂颗粒中的扩散是等温扩散,是靠浓度梯度为推动力的。ros

13、trup-nielsen和trimm19也认为碳在催化剂颗粒中的扩散是靠浓度梯度为推动力的。holstein和boudart20通过计算得出当金属催化剂表面发生放热反应的时候,在气体/金属界面和金属/纤维界面所产生的温度差小于0.1k可以忽略。另外,rostrup-nielsen19,21也发现在催化剂颗粒表面发生吸热反应的纤维生长。因此,他们认为碳在催化剂颗粒的扩散是靠浓度梯度为推动力而不是靠温度梯度为推动力的。不论靠什么作推动力,炭纤维的生长速度主要由碳原子在催化剂颗粒中的扩散速率决定,则是不容置疑的18。当催化剂表面被热解碳完全覆盖而失去催化活性时,纤维就停止生长。对于碳氢气体化合物催化

14、热解析出碳和催化剂失活的问题,许多科学家研究了金属与气体的界面反应。碳作为碳氢气体热解的最终产物有三种聚集状态:颗粒、片状及纤维状。随着反应条件不同,三种形态所占的比例将有所变化。当碳氢气体分子与催化剂颗粒相撞时,碳氢、碳碳键被削弱,再与气氛中的氢作用,各原子将重新组合,有人认为这时将产生一种活性很高的过渡态碳原子22,它继续变化的方向有以下几个:(1) 再与吸附在铁表面的氢和碳氢化合物结合;(2) 与同类碳原子相连形成表面包覆碳;(3) 进行催化剂体内扩散;(4) 析出、连续长出炭纤维;其中(2)与催化剂失活有关。尽管上述生长过程,为典型的晶须状纤维提供了一个合理的解释,但对于分叉状、多方向

15、状、螺旋状vgcf却不能自圆其说。对于vgcf的分叉现象,可能是由于碳以固态形式从催化剂中析出,这会对催化剂颗粒产生排挤力,这种排挤作用可能会使催化剂颗粒分裂为两个或更多的小颗粒,这些小颗粒对纤维的生长仍然起着催化作用,结果导致了vgcf的分叉。对于双向状、多方向状、螺旋状vgcf的生长机理,人们还没有统一和明确的认识。目前也仅仅是一些推测,认为氢气和第二种金属的加入,会使催化剂颗粒重构,形成适于生长vgcf的多个晶面15,然后是碳原子在颗粒中的扩散,在晶面上析出,生长vgcf。气相生长炭纤维尽管有大约二十年的研究和发展历史,但由于其生长过程的复杂性,人们对其生长机理的认识还远未完成,随着实验技术的发展,认识将更加深入。4气相生长纳米炭纤维的性能及应用前景作为一维结构的vgcnf具有许多优越的性能,因此它的潜在应用十分广阔。由于vgcnf的缺陷数量很少、结构致密,所以vgcnf具有高强度、高比模量的力学性能,其强度比普通 vgcf 大。并且vgcnf具有直径小、长径比大的特点,因此可以用于高级复合材料的增强体,也可以用于航空、航天、环境、工民建材料及日常生活

展开阅读全文
相关资源
相关搜索

当前位置:首页 > IT计算机/网络 > 管理信息系统

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号