材料物理导论总结-(总11页)

上传人:文库****9 文档编号:181269654 上传时间:2021-04-29 格式:DOCX 页数:11 大小:26.45KB
返回 下载 相关 举报
材料物理导论总结-(总11页)_第1页
第1页 / 共11页
材料物理导论总结-(总11页)_第2页
第2页 / 共11页
材料物理导论总结-(总11页)_第3页
第3页 / 共11页
材料物理导论总结-(总11页)_第4页
第4页 / 共11页
材料物理导论总结-(总11页)_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《材料物理导论总结-(总11页)》由会员分享,可在线阅读,更多相关《材料物理导论总结-(总11页)(11页珍藏版)》请在金锄头文库上搜索。

1、第一章:材料的力学形变:材料在外力作用下发生形状和尺寸的变化,称为形变力学性能(机械性能):材料承受外力作用,抵抗形变的能力及其破坏规律,称为材料的力学性能或机械性能应力:材料单位面积上所受的附加内力称应力。法向应力应该大小相等,正负号相同,同一平面上的两个剪切应力互相垂直。法向应力导致材料的伸长或缩短,剪切应力引起材料的切向畸变。应变:用来表征材料受力时内部各质点之间的相对位移。对于各向同性材料,有三种基本的应变类型。拉伸应变,剪切应变,压缩应变。拉伸应变:材料受到垂直于截面积的大小相等,方向相反并作用在同一直线上的两个拉伸应力时材料发生的形变。剪切应变:材料受到平行于截面积的大小相等,方向

2、相反的两剪切应力时发生的形变。压缩应变:材料周围受到均匀应力P时,体积从起始时的V0变化为V1的形变。弹性模量:是材料发生单位应变时的应力,表征材料抵抗形变能力的大小,E越大,越不易变形,表征材料的刚度越大。是原子间结合强度的标志之一。黏性形变:是指黏性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间的增大而增大。剪切应力小时,黏度与应力无关,随温度的上升而下降。牛顿流体:服从牛顿黏性定律的物体称为牛顿流体。在足够大的剪切应力下或温度足够高时,无机材料中的陶瓷晶界,玻璃和高分子材料的非晶部分均会产声黏性形变,因此高温下的氧化物流体,低分子溶液或高分子稀溶液大多属于牛顿流体,而高分子浓溶液

3、或高分子熔体不符合牛顿黏性定律,为非牛顿流体。塑性:材料在外应力去除后仍能保持部分应变的特性称为塑性。晶体塑性形变两种类型:滑移和孪晶。延展性:材料发生塑性形变而不断裂的能力称为延展性。(泊松比),定义为在拉伸试验中,材料横向单位面积的减少与纵向单位长度的增加率之比。滑移是指在剪切应力作用下晶体的一部分相对于另一部分发生平移滑动,在显微镜下可观察到晶体表面出现宏观条纹,并构成滑移带。滑移一般发生在原子密度大和晶向指数小的晶面和晶向上。材料的滑移系统往往不止一个,滑移系统越多,则发生滑移的可能性越大。实际晶体材料的滑移是位错缺陷在滑移面上沿滑移方向运动的结果:位错运动所需的剪切应力比使晶体两部分

4、整体相互滑移所需的应力小的多。蠕变:蠕变是在恒定的应力作用下材料的应变随时间增加而逐渐增大的现象。影响因素:温度、应力、组分、晶体键型、气孔、晶粒大小、玻璃相等。无机材料的蠕变理论:位错蠕变理论,扩散蠕变理论,晶界蠕变理论。黏弹性:材料形变介于理想弹性固体和理想黏性液体之间,既具有固体的弹性又有液体的黏性,称为黏弹性。时温等效原理力学松弛现象有蠕变,应力松弛(静态力学松弛,滞后和力损耗(动态力学松弛晶界:是结构相同而取向不同晶体之间的界面。高分子材料的力损耗与温度和频率的关系:1.高分子材料在玻璃化温度Tg以下受到应力时,相应的应变很小,主要由键长和键角的改变引起,速度快到几乎能跟得上应力的变

5、化,因此&很小,tan&也小;温度升高到Tg附近时,以玻璃态向高弹态过渡,链段开始运动,此时材料的粘度很大,链断运动收到的摩擦阻力很大,高弹应变明显落后于应力的变化,因此tan&出现极大值;温度更高时应变大,而且链断运动比较自由,&变小,tan&也小;温度很高时,材料从高弹态向粘流态过渡,分子链段间发生互相滑移,导致力损耗急剧增加,tan&急剧增大。2.高分子材料在应力变化的频率较低时,分子链断运动基本能跟上应力的变化,tan&很小;频率很高时,分子链断完全跟不上应力的变化,tan&也很小;而当频率中等时,分子链断运动跟不上应力的变化,使tan&出现极大值,此时材料表现出明显的粘弹性。应力松弛

6、:是指在恒定的应变时,材料内部的应力随时间增长而减小的现象。机械强度:材料在外力作用下抵抗形变及断裂破坏的能力称为机械强度。根据外力作用形式,可分为抗拉强度,抗冲强度,抗压强度,抗弯强度,抗剪强度。材料在低温下大多脆性断裂;高温下大多韧性断裂。麦克斯韦模型:应变恒定时,应力随时间指数衰减;形变一定,力减小。(应力松弛)沃伊特模型:应力恒定时,形变随时间增大而增大;力一定,形变增大。(蠕变)延展性材料拉伸时有可塑性功,可阻碍断裂。第二章:材料的热学热力学与统计力学的关系:热力学是用宏观的方法,研究热运动在宏观现象上表现出来的一些规律,是从能量转化的观点来研究物质的热性质;而统计力学则从物质的微观

7、结构出发,应用微观粒子运动的力学规律和统计方法来研究物质的热性质。热力学第二定律:克劳修斯说法不可能把热从低温物体传到高温物体而不引起其他的变化。开尔文说法不可能从单一热源取热使之完全变为有用的功而不引起其他的变化。低温时:CpCv高温时:CpCv,定压加热时,物体除升温外,还会对外做功,升高单位温度需吸更多热量。经典理论:定压下单一元素的摩尔热容Cv=25J/(K?mol)化合物材料摩尔热容等于构成该化合物分子各元素摩尔热容之和。1摩尔固体的总能量:E=3NkT=3RT;摩尔热容Cv=3Nk=3R25J/(K?mol)晶格热振动:晶体中的原子以平衡位置为中心不停地振动,称其为“晶格热振动”声

8、子:晶格振动的能量是量子化的,以hv为单元来增加或减少能量,称这种能量单元为“声子”。金属材料的总热容为声子和电子两部分的共同贡献。固体材料热膨胀的本质:在于晶格点阵实际上在做非简谐运动,晶格振动中相邻质点间的作用力实际上是非线性的,点阵能曲线也是非对称的。体胀系数近似等于三个线胀系数之和。热传导:是指材料中的热量自动的从热端传向冷端的现象。固体材料热传导:主要由晶格振动的格波来实现;高温时还可能由光子热传导。材料热传导的微观机理:1.声热子传导2.光热子传导3.电子热传导(金属主要)含孔率大的陶瓷热导率小,保温。热稳定性:是指材料承受温度的急剧变化而不致碎裂破坏的能力。裂纹的产生和扩展与材料

9、中积存的弹性应变能和裂纹扩展所需的断裂表面能有关。材料的抗热应力损伤性正比于断裂表面能,反比与弹性应变能释放率。第三章:材料的电学金属自由电子气模型(费米电子气模型):该模型认为金属材料的原子失去价电子成为带正电的离子实,而价电子在离子实的正电背景下能自由移动,既满足电中性条件,也不会因价电子间的库伦斥力而散开,这种自由电子还服从泡利不相容原理,其能量分布满足费米-狄拉克分布函数能带理论:采用“单电子近似法”来处理晶体中的电子能谱。单电子近似法:(来处理晶体中电子能谱)固体原子核按一定周期性固定排列在晶体中每个电子是固定原子核势场及其它电子的平均势场中运动电子型电导:导电载流子是电子或空穴(即

10、电子空位)具有“霍尔效应”例:硅、锗和砷化镓等晶态半导体材料以及许多导体材料杂质和缺陷的影响:使严格周期性排列原子产生的周期性势场受到破坏,在禁带中引入允许电子所具有的能量状态(即能级);这种禁带中的能级对半导体材料性质有重要的影响。杂质能级与允带能级的区别:允带能级可容纳自旋方向相反的两个电子。施主杂志能级只可能有:1.中性施主被一个电子占据2.电离施主没有被电子占据。本征是指半导体本身的特征。半导体的载流子浓度:实际的半导体总含有或多或少的杂质,但当杂质浓度很小或者温度足够高时,由价带到导带的本征激发所产生的载流子可超过杂质电离产生的载流子,这时载流子浓度主要由半导体本征性质所决定,而杂质

11、影响可忽略不计,也称这种半导体为本征半导体。本征载流子浓度ni随温度T升高呈指数增大,ni随禁带宽度Eg成指数减小。导带中电子浓度n。和价带中空穴浓度P。受温度T和费米能级Ef的影响。电子型电导:Rh霍尔系数只与材料的载流子种类浓度有关;“磁阻效应”可分为物理磁阻和几何磁阻。施主和受主杂质同时存在时,半导体的导电类型决定于浓度大的杂质。本征载流子浓度ni随温度升高呈指数增大,随禁带宽度Eg的增大呈指数减小。任何非简并半导体中两种载流子浓度的乘积等于本征载流子的浓度的平方与杂质无关。杂质半导体的杂质能级被电子或空穴占据的情况与允带中的能级有区别:在允带中的能级可以容纳自旋方向相反的两个电子,而施

12、主(或受主)杂质能级上,只可能有如下两种情况:1.中性施主(或受主)被一个电子(或空穴)占据;2.电离施主(或受主)没有被电子(或空穴)占据。离子型电导:具有“电解效应”电极附近发生电子得失,伴随着产生新物质。两种离子载流子:晶格离子本身因为热振动而离开晶格形成热缺陷的本征离子载流子,它在高温下起主要作用由于杂质离子等弱联系离子运动而形成的杂质离子载流子,它在低温下起主要作用。其中的载流子浓度与迁移率都与温度呈指数正比关系。介电体分子三种极化类型:电子极化、离子极化、偶极子转向极化电损耗来源:普通无机晶体介质只有位移极化,损耗来源主要为离子电导,tan与电导率成正比无定形玻璃:电导损耗、松弛损

13、耗、结构损耗(由Si-O网络的变形引起)多晶陶瓷:离子电导损耗、松弛损耗、夹层损耗铁电陶瓷:自发极化超电导性的特征:完全导电性、完全抗磁性、磁通的量子化、约瑟夫逊效应叙述BaTiO3典型电解质中在居里点以下存在的四种极化机制:电子极化:指在外电场作用下,构成原子外围的电子云相对原子核发生位移形成的极化。建立或消除电子极化时间极短2.离子极化:指在外电场的作用下,构成分子的离子发生相对位移而形成的极化,离子极化建立核消除时间很短,与离子在晶格振动的周期有相同数量级3.偶极子转向极化:指极性介电体的分子偶极矩在外电场作用下,沿外施电场方向而产生宏观偶极矩的极化。4.位移型自发极化:是由于晶体内离子

14、的位移而产生了极化偶极矩,形成了自发极化。试比较,聚合物介电松弛与力学松弛的异同点:材料的力学松弛包括了静态力学松弛与动态力学松弛:蠕变与应力松弛属于静态力学松弛;滞后和力损耗属于动态力学松弛。介电松弛指在固定频率下测试聚合物试样的介电系数和介电损耗随温度的变化,或在一定温度下测试试样的介电性质随频率的变化。两者都反映了聚合物的结构、构型及链段的运动状态。引起散射的根本原因:半导体内周期势场受到破坏。电离杂质浓度越高,载流子散射机会越多;温度越高,越不易散射。温度越高,晶格热振动越激烈,散射概率增大。散射与迁移呈反比。导体,半导体和绝缘体的区别:电子全部填满到某个允带,而其上面的允带则完全空着

15、,填满电子的允带称为满带,完全没有电子的允带称为空带,具有这种能带结构的固体称为绝缘体。能带结构与绝缘体相似,不同点在于禁带宽度Eg较窄,因而,不在很高的温度下,满带中的部分电子受热运动的影响,能够被热激发而越过禁带,进入到上面的空带中去而形成自由电子,从而产生导电能力,具有这种能带结构的固体称为半导体。满带上面的允带不是全部空着,而是有一部分能级被电子填充,另一部分能级空着,这种允带称为导带。有外加电场时导带中的电子便能挑到能量较高的能级上形成电流,称这种材料为导体。介电体的击穿:介电体在高电场下电流急剧增大,并在某一电场强度下完全丧失绝缘性能的现象。第四章:材料的磁学磁偶极子:通常把线度小

16、至原子的小磁体称为磁偶极子。产生磁矩的原因:1.电子绕原子核的轨道运动,产生一个非常小的磁场,形成一个沿旋转轴方向的轨道磁矩2.每个电子本身做自旋运动,产生一个沿自旋轴方向的自旋磁矩,它比轨道磁矩大的多。(材料的宏观磁性是组成材料的原子中电子的磁矩引起的)未填满的电子壳层,电子的自旋磁矩未被完全抵消,则原子具有永久磁矩。反之。波尔磁子UB:把原子中每个电子都看作一个小磁体,具有永久的轨道磁矩和自旋磁矩。最小的磁矩称为波尔磁子。10-24(Am2)材料的磁性取决于材料中原子和电子磁矩对外加磁场的响应,具体可分为抗磁性,顺磁性,反铁磁性,铁磁性和亚铁磁性,前三种属于弱磁性,后两种为强磁性。材料的抗磁性和顺磁性的来源:1.组成原子的电子的固有自旋2.电子绕核旋转

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号