高频淬火时提高加热速度

上传人:宝路 文档编号:17805026 上传时间:2017-11-16 格式:DOC 页数:15 大小:64.74KB
返回 下载 相关 举报
高频淬火时提高加热速度_第1页
第1页 / 共15页
高频淬火时提高加热速度_第2页
第2页 / 共15页
高频淬火时提高加热速度_第3页
第3页 / 共15页
高频淬火时提高加热速度_第4页
第4页 / 共15页
高频淬火时提高加热速度_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《高频淬火时提高加热速度》由会员分享,可在线阅读,更多相关《高频淬火时提高加热速度(15页珍藏版)》请在金锄头文库上搜索。

1、高频淬火时提高加热速度,减少热量向内透入,有望减小变形。关键是防变形,以下几点供你参考。1,使用托架工装,严防自重变形;2,较低温度入炉,阶梯升温,尽量减小热应力变形;3,使用尽量低的淬火温度;4,浅冷淬火,利用相变超塑性辅助胎具整形;这个问题问的好。简单地说:对于形状复杂、截面不对称的工件比如键槽轴、键槽拉刀等,在淬火冷却时很不均匀,这样就产生了热应力和组织应力。当心表温差引起的瞬时热应力超过材料的屈服极限时外表面在拉应力作用下伸长,内表面在压应力作用下被压缩,产生了变形,当应力超过材料的强度极限时发生开裂。当冷却到马氏点以下发生马氏体转变时,应力和应变恰恰相反,由于组织应力引发的变形表现出

2、与热应力变形相反的结果。当组织应力超过材料的强度极限时,就发生了开裂。谢谢版主 根我理解的大致一样 但现实生产中 热处理理想化的工艺大部分不能实现 原因是生产大于一切 有些工序比如说 增加去应力加热保温时间 增加一遍去应力加热 氮化缓冷等等 这样都会影响生产最终产品变形但如果按照理想工艺操作生产能力就会严重下降。对有些产品开裂存在但不是最严重的问题 大部分产品主要解决的就是各种变形 变形量超标如果无法返工就是废品。 我上面说的油冷 直接空冷 哪个对变形影响较大(这个我不理解) 是油冷要稍微好一些?不用客气,很高兴和您交流并关注此帖的讨论我的观点从理论角度讲,应该是正确的。但在实际生产中,因为每

3、个人遇到的工件是不同的,所以,采用同样的方法,取得的效果并不一致。可能您的工件结构相应简单,如果遇到结构复杂并尺寸单薄的工件,用油(80-120 度)冷却和随炉冷却,变形的问题就会显现出不同的结果。所以,19 楼朋友说的,具体问题具体分析,确实是这样的。热处理切忌教条主义,应灵活应用,实践出真知。您说有些产品开裂存在但不是最严重的问题,我有点不明白,因为开裂即报废,怎么说不是最严重的问题呢?模具的断裂失效原因及预防模具的断裂是由裂纹萌生及裂纹扩展两个过程造成的,其影响因素为:(1)设计强度不足,截面过渡不平滑(突变、凹槽、尖角等);(2)制造质量差,工作面粗糙,工作面有原始缺陷(如:发纹、凹坑

4、、麻点等);(3)模具材料的冶金质量及加工质量对断裂失效影响较大,具体反映在材料的断裂韧度上;(4)模具的热处理方法和质量进一步产生影响。防止断裂失效的措施:(1)选择优质纯洁的钢材;(2)正确合理的结构设计;(3)正确的锻造以改善材料的原始组织缺陷;(4)有效的预备热处理,使模块获得均匀、细致的组织基础;(5)对模具进行强韧化处理和表面强化处理。模具塑性变形失效机理及预防:模具在服役时,承受巨大的应力和载荷。一般是不均匀的。当模具的某个部位所受的应力超过了当时温度下模具材料的屈服极限时,就会以滑移、孪晶、晶界滑移等方式产生塑性变形,造成模具无法修复而报废。在室温下服役的模具(冷作模具),其塑

5、性变形是模具材料在室温下的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的室温强度。而模具的室温强度取决于所选择的模具材料及热处理制度。在高温下服役的承载模具(如压铸模、塑料注射模、热锻模等),其屈服过程是在较高温度下进行的,是否产生塑性变形,主要取决于模具的工作温度和模具材料的高温强度。避免塑性变形或降低其倾向的措施对室温下工作的冷作模具,应选择高强度钢并进行硬化处理;对高温下工作的热作模具,选择蠕变强度高的热强钢并辅之以优质的热处理,另外,还应对模具进行循环冷却。一般来讲,钢铁热处理变形除在炉中加热时因自重产生变形(蠕变)外,其余开裂变形基本与内应力存在一定的联系。内应力如果进

6、行粗略来分一般可分为如下几类:热应力 组织应力 铸、锻、机加工等靠造成的内应力 在此主要讨论热处理过程的内应力,主要有热应力与组织应力。 热应力主要出现在加热过程与冷却过程,而组织应力一般主要出现在淬火末期。 按热处理从淬火开始的顺序进行一些简单分析一:加热过程中的应力淬火加热过程无疑是热应力为主,在加热过程中有开裂与变形的概率。因此我们热处理人用上了分级加热。为较详细说明,以二级预热来说明。1 一级 预热温度的选择一般来讲,我们热处理人用 500-650做为第一级预热。其目的何在?机加后的工件如果是轴,则其直线度、振摆均较好。但这只是因为在机加过程中所受的加工力与工件的内力平衡而已,并非工件

7、内不存在内应力。即,机加工过程中,打破了坯料时的应力平衡,而产生了新的应力平衡。众所周知,一般来讲钢铁材料的屈服强度随温度的升高而降低,如果温度升高到一定的温度,工件在加热过程中的热应力与机加引起的内应力可能产生叠加,超出材料的屈服强度,致使工件产生畸变。设想,如果在材料的弹性极限内进行加热(弹性极限应该也随着加热温度的升高而降低),工件原存的内应力就会释放,此时会发生工件有规律的弹性变形,避免其高温加热产生的因内应力超出屈服强度引起的畸变为好。经过过试验认为,大部分材料的加热的弹性范围为 450-650之间,因此选用此温度范围为第一级预热。2 二级预热温度选 800-890,目的何在?主要是

8、此为晶格转变积蓄能量,避免在相变时巨大的内力引发工件的畸变。所以在 AC1左右进行预热是必要的,一般为提升加工效率,将预热温度提升到 AC1 稍高温度。3 加热过程中应力分布分析。如果进行详细分析,篇幅大长,建议查阅有关资料。二 冷却过程的应力从高温冷却下来到达 BS 点之前,必定伴随着热应力,因此出现了多种的淬火工艺,如分级淬火、边角预淬火、边角擦油或水、预冷淬火等,其目的是围绕着热应力进行的。当温度到达相变点时,出现了组织应力,为减小组织应力出现了等温淬火、引上恒温处理、马氏体分级淬火等。为减小冷却过程中的应力,出现了上述淬火方法的组合,称为复合淬火等。三 减小热处理变形与开裂的总则1 均

9、匀加热2 均匀冷却如此而已,至于实际当中形形色色的方法,均为达到上述目的而进行的。如:堵孔、包边及尖角、角倒圆、塞石棉、掏料等等。四 尖锐边角是所有开裂的罪根祸首吗?内应力过大是造成工件变形与开裂的罪根祸首。如果大件热处理(一般在调质淬火后期或调质回火前后) ,其根本原因在于热应力的过大,裂纹起始于工件心部或接近于心部。有资料验证,在大件外部加开小槽进行淬火,结果裂纹并不沿着开槽处开裂。这说明,为避免大件调质开裂,采用表面光滑过渡,增大圆角等均属药不对症。此类件如果可能,加强心部的冷却是防止开裂的有效着法。当然大件有夹杂、气泡、发纹与之同在,在热前进行探伤是有必要的,也是避免开裂的工作。五 高

10、淬透性钢真的不能水淬吗?类似 D2 材料,如果我讲,40*30*30mm 的料,进行正常奥氏体化,然后水淬,认为开裂的人应该会占大多数。不过我做过试验,如果冷却操作恰当,一样不会开裂。此类如果为10mm 的小件,可以水中一直冷却到室温而不裂,盖因其均匀冷却之故。当然此类操作不建议普通操作者进行。六 总结如同第三条介绍,但如果不能均匀加热与冷却怎么办?请仔细分析工件变形与开裂是何种应力造成,用热应力、组织应力在一定范围内是相反的原理,适当人为增加反向应力,使热应力与组织应力的叠加应力互相抵销,则变形小矣。如大和久重雄认为,不预热进行淬火,可减小变形一致,但此方法不是万能的,在有些场合会造成相反的

11、结果。网吧草稿,其内多有错误,请不吝指教。个人意见,不足为凭。关于热处理预防变形的参考资料:对金属材料采用适当的方式进行加热、保温和冷却,有时并兼之以化学作用和机械作用,使金属合金内部的组织和结构发生改变,从而获得改善材料性能的工艺。热处理工艺是使各种金属材料获得优良性能的重要手段。但是热处理工艺除了具有积极的作用之外,在处理过程中也不可避免地会产生或多或少的变形,而这又是机械加工中必须避免的,两者之间是共存而又需要避免的关系,只能采用相应的方法尽量把变形量控制在尽量小的范围内。 温度是变形的关键因素:实际生产中应用的热处理工艺形式非常多,但是它们的基本过程都是由加热、保温和冷却三个阶段组成的

12、。整个工艺过程都可以用加热速度、加热温度、保温时间、冷却速度以等几个参数来描述。在热处理工艺中,要用到各种加热炉,金属热处理便在这些加热炉中进行,如基本热处理中的退火、淬火、回火、化学热处理等等。因此,加热炉内的温度测量就成为热处理的重要工艺参数测量。每一种热处理工艺规范中,温度是很重要的内容。如果温度测量不准确,热处理工艺规范就得不到正确的执行,以至造成产品质量下降甚至报废。温度的测量与控制是热处理工艺的关键,也是影响变形的关键因素。工艺温度降低后工件的高温强度损失相对减少,塑性抗力增强。这样工件的抗应力变形、抗淬火变形、抗高温蠕变的综合能力增强,变形就会减少; 工艺温度降低后工件加热、冷却

13、的温度区间减少,由此而引起的各部位温度不一致性也会降低,由此而导致的热应力和组织应力也相对减少,这样变形就会减少; 如果工艺温降低、且热处理工艺时间缩短,则工件的高温蠕变时间减少,变形也会减少。减小热处理变形需要合理的热处理工艺。变形的其它影响因素及减小措施:预备热处理正火硬度过高、混晶、大量索氏体或魏氏组织都会使内孔变形增大,所以要用控温正火或等温退火来处理锻件。金属的正火、退火以及在进行淬火之前的调质,都会对金属最终的变形量产生一定的影响,直接影响到的是金属组织结构上的变化。实践证明,在正火时采用等温淬火可有效地使金属组织结构趋于均匀,从而使其变形量减小。 运用合理的冷却方法 金属淬火后冷

14、却过程对变形的影响也是很重要的一个变形原因。热油淬火比冷油淬火变形小,一般控制在 10020。油的冷却能力对变形也是至关重要的。淬火的搅拌方式和速度均影响变形。金属热处理冷却速度越快,冷却越不均匀,产生的应力越大,模具的变形也越大。可以在保证模具硬度要求的前提下,尽量采用预冷;采用分级冷却淬火能显著减少金属淬火时产生的热应力和组织应力,是减少一些形状较复杂工件变形的有效方法;对一些特别复杂或精度要求较高的工件,利用等温淬火能显著减少变形。零件结构要合理 金属热处理后在冷却过程中,总是薄的部分冷得快,厚的部分冷得慢。在满足实际生产需要的情况下,应尽量减少工件厚薄悬殊,零件截面力求均匀,以减少过渡

15、区因应力集中产生畸变和开裂倾向;工件应尽量保持结构与材料成分和组织的对称性,以减少由于冷却不均引起的畸变;工件应尽量避免尖锐棱角、沟槽等,在工件的厚薄交界处、台阶处要有圆角过渡;尽量减少工件上的孔、槽筋结构不对称;厚度不均匀零件采用预留加工量的方法。采用合理的装夹方式及夹具目的使工件加热冷却均匀,以减少热应力不均,组织应力不均,来减小变形,可改变装夹方式,盘类零件与油面垂直,轴类零件立装,使用补偿垫圈,支承垫圈,叠加垫圈等,花键孔零件可用渗碳心轴等。 机械加工当热处理是工件加工过程的最后工序时,热处理畸变的允许值应满足图样上规定的工件尺寸,而畸变量要根据上道工序加工尺寸确定。为此,应按照工件的

16、畸变规律,热处理前进行尺寸的预修正,使热处理畸变正好处于合格范围内。当热处理是中间工序时,热处理前的加工余量应视为机加工余量和热处理畸变量之和。通常机械加工余量易于确定,而热处理由于影响因素多比较复杂,因此为机械加工留出足够的加工余量,其余均可作为热处理允许畸变量。热处理后再加工,根据工件的变形规律,施用反变形、收缩端预胀孔,提高淬火后变形合格率。 采用合适的介质 在保证同样硬度要求的前提下,尽量采用油性介质,实验和实践证明,再其他条件无差异的前提下,油性介质的冷却速度较慢,而水性介质的冷却速度则相对快一些。而且,和油性介质相比,水温变化对水性介质冷却特性的影响较大,在同样的热处理条件下,油性介质相对水性介质淬火后的变形量要相对小。淬裂及预防:淬裂是机械零件最常见的致命缺陷。已淬裂的工件,100%报废,无任何补救措施。极个别的淬裂工件,依据开裂部位,可考虑予以焊补使用。1.形状效应引起的淬裂 主要是设计因素造成的,如; 园角 R 过小,孔穴位置设置不当,截面过渡不好等。预防措施:改

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号