使用UC3842设计的CUK降压电路(无PCB电路板).25页

上传人:文库****9 文档编号:175187094 上传时间:2021-03-22 格式:DOC 页数:25 大小:915.50KB
返回 下载 相关 举报
使用UC3842设计的CUK降压电路(无PCB电路板).25页_第1页
第1页 / 共25页
使用UC3842设计的CUK降压电路(无PCB电路板).25页_第2页
第2页 / 共25页
使用UC3842设计的CUK降压电路(无PCB电路板).25页_第3页
第3页 / 共25页
使用UC3842设计的CUK降压电路(无PCB电路板).25页_第4页
第4页 / 共25页
使用UC3842设计的CUK降压电路(无PCB电路板).25页_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《使用UC3842设计的CUK降压电路(无PCB电路板).25页》由会员分享,可在线阅读,更多相关《使用UC3842设计的CUK降压电路(无PCB电路板).25页(25页珍藏版)》请在金锄头文库上搜索。

1、使用UC3843设计的CUK降压电路第一章 开关电源简介 1.1 开关电源原理分析开关电源是通过脉宽调制或频率调制,控制MOS管导通时间,继而控制电感线圈的磁通量,同时又要保证电感线圈不会达到磁饱和状态,从而控制输出电压的高低。同时通过反馈电路保证负载变化和输入电压变化时,输出电压仍能保证在一定范围内的稳定。1.2、开关电源分类DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种:一是脉宽调制方式Ts不变,改变ton(通用);二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:(1) Buck电路降压斩波器,其输出平均电压Uo小

2、于输入电压Ui,极性相同。(2) Boost电路升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。(3) Buck-Boost电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。(4) Cuk电路降压或升压斩波器,其输出平均电压Uo 大于或小于输入电压UI,极性相反,电容传输。第二章 3843设计的CUK DC-DC电路2.1、3843性能介绍The 3842A(AM)/43A(AM)/44A(AM)/45A(AM ) are fixed frequency current mode PWM controller. They are specially

3、designed for OFF Line and DC to DC converter applications with a minimal external components. Internally implemented circuits include a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current to

4、tempole output ideally suited for driving a power MOSFET. Protection circuitry includes built undervoltage lockout and current limiting. The 3842A(AM) and 3844A(AM) have UVLO thresholds of 16 V (on) and 10 V (off). The corresponding thresholds for the 3843A(AM)/45A(AM) are 8.4V (on) and 7.6V (off) .

5、 The MIK3842A(AM) and MIK3843A(AM) can operate within 100% duty cycle. The 3844A(AM) and UC3845A(AM) can operate within 50% duty cycle.The 384XA(AM) has Start-Up Current 0.17mA (typ).Features Low Start-Up and Operating Current High Current Totem Pole Output Undervoltage Lockout With Hysteresis Opera

6、ting Frequency Up To 300KHz (384XA) 500KHz (384XAM)2.2、引脚定义2.3、由3843设计的CUK降压电路原理图2.4、工作原理介绍当+12V通过D1加到U1的第7脚后,随着电容C2两端电压慢慢升高,当电压超过8.6V时,U1开始启动,第8脚输出+5V50MA稳压电源。同时V1也经过D1和L1给电容C1充电,C1两端的电压达到Vi,且左+右-。第8脚输出的+5V经R1加到U1第4脚,同时为电容C3充电。这时R1和C3组成的RC振荡电路开始工作,为U1提供稳定的工作频率。当RC振荡进入稳态后,U1的第6脚开始输出PWM脉冲,并给R4耦合给Q1的G

7、极。在Ton周期,Q1导通,输入电压Vi通过L1,Q1,为电容C充电,C为负载供电。同时C1中的电能释放,通过L2和电容C沟成回路,对电容C充电,下正上负,同时部分电能转化为磁能存储在L2中。电源管Q1中的电流有两个,一个是L1中的电流,另一个是C1中的电流。在Toff周期Q1截止,输入电压Vi通过L1开始为C1充电,电容C1的电压上正下负。同时L2的电流方向不变,通过二极管D,对电容C充电,磁通转化为电能,存储在电容C中。二极管D中有两种电流,一个是对C1的充电电流,一个L2中的电流。所以无论Q1导通与否,C在Ton期间和Toff期间都有连续的充电电流。(2)、状态指示R7和LED1为指示状

8、态设置,当5V电压输出时,LED1亮起,说明5V电压已经产生。当5V负载过重或短路时,U1保护,第6脚停止输出PWM脉冲,5V电压消失,LED1熄灭。(3)、过流保护电阻R6为过流取样电阻,该电阻有两个作用,一是当该电阻上的分压大于0.8V时,U1过流保护动作,第6脚停止输出PWM脉冲,输出电压5V消失。二是该电阻能够对每一个方波进行检测,当通过的方波开启时间过长时,U1能够强制停止第6脚的输出,防止意外干扰导致Q1长时间导通引起过热损坏。所以R6不能使用导线短接,否则会引起U1长时间检测不到信号,而导致Q1长时间导通而过热损坏。(4)、输出电压调整CUK电路的输出为负压,而UC3843的BF

9、反馈端要求输入的电压为-0.3V5.5V,所以直接使用电阻分压取样是不符合要求。所以需要利用TL431和光耦配合,将负压的反馈信号转为正向电压。R1和VR1组成反馈取样电路,调整VR1的阻值,改变VR1与R1的分压比,把此电压输出到U1的第2脚,U1改变第6脚输出的PWM占空比的大小,从而改变输出电压的高低。2.5、元件的选用与取值对于电感L1、L2与耦合电容C1及输出电容C8的计算,需要假定一些条件和参数不变,如下图所示Fig 2.5When MOSFET Q1 switches on, the right hand side of inductor L1 is shorted to gro

10、und. The current in the inductor ramps according to the equationwhere V is the voltage across the inductor (in this case it is equal to the input voltage), L is the inductor value and di/dt is the change in inductor current with time. Thus with a fixed voltage across the inductor and a fixed inducto

11、r value, the change in current with time is constant. When the MOSFET Q1 switches off, the inductor tries to maintain its current flow. It does this by creating a voltage across it where the right hand side tries to fly positive (to push current out of the right hand end) and the left hand side flie

12、s negative. Since the left hand side of the inductor is clamped to the input voltage, the right hand side of the inductor flies positive to a voltage above Vin in order to maintain current flow. The energy from the inductor flows into capacitor C1 charging it with a positive voltage (which is higher

13、 than Vin). The right hand side of C1 is clamped to +0.3V by diode D, but for the sake of convenience we will ignore this voltage drop and assume the right hand side of the capacitor is clamped to 0V. We will work out later exactly what voltage C1 charges to, but for the moment it is sufficient to a

14、ssume it charges to a voltage higher than Vin. We will call this voltage Vcap.Since the voltage Vcap is higher than Vin, the voltage across the inductor now has the opposite polarity to before. The inductor discharges according to the equationwhere V is the voltage across the inductor, thusIt is int

15、eresting to note that the value of di/dt is determined ONLY by the inductance value and the voltage across the inductor. The controller IC has nothing to do with setting the inductor ramp current.When the MOSFET switches on again the voltage on the drain of the MOSFET Q1 goes from Vcap to 0V. Since

16、the voltage across a capacitor cannot change instantaneously, an equal negative going voltage appears on the anode of diode D so this node transitions from 0V to Vcap. We now have a negative amplitude square wave voltage (at the right hand node of C1) being applied to an LC filter (L2 and C2). The LC filter averages out t

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号