(推荐)微积分及其意义

上传人:W**** 文档编号:175185863 上传时间:2021-03-22 格式:DOCX 页数:10 大小:59.84KB
返回 下载 相关 举报
(推荐)微积分及其意义_第1页
第1页 / 共10页
(推荐)微积分及其意义_第2页
第2页 / 共10页
(推荐)微积分及其意义_第3页
第3页 / 共10页
(推荐)微积分及其意义_第4页
第4页 / 共10页
(推荐)微积分及其意义_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《(推荐)微积分及其意义》由会员分享,可在线阅读,更多相关《(推荐)微积分及其意义(10页珍藏版)》请在金锄头文库上搜索。

1、如果您需要使用本文档,请点击下载按钮下载!导数和微分在书写的形式有些区别,如y=f(x),则为导数,书写成dy=f(x)dx,则为微分。积分是求原函数,可以形象理解为是函数导数的逆运算。通常把自变量x的增量 x称为自变量的微分,记作dx,即dx = x。于是函数y = f(x)的微分又可记作dy = f(x)dx,而其导数则为:y=f(x)。设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f(x)=g(x),则有g(x)dx=f(x)+c。向左转|向右转扩展资料:设函数y = f(x)在x的邻域内有定

2、义,x及x + x在此区间内。如果函数的增量y = f(x + x) - f(x)可表示为 y = Ax + o(x)(其中A是不依赖于x的常数),而o(x)是比x高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且Ax称作函数在点x相应于因变量增量y的微分,记作dy,即dy = Ax。函数的微分是函数增量的主要部分,且是x的线性函数,故说函数的微分是函数增量的线性主部(x0)。通常把自变量x的增量 x称为自变量的微分,记作dx,即dx = x。于是函数y = f(x)的微分又可记作dy = f(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导

3、数也叫做微商。当自变量X改变为X+X时,相应地函数值由f(X)改变为f(X+X),如果存在一个与X无关的常数A,使f(X+X)-f(X)和AX之差是X0关于X的高阶无穷小量,则称AX是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记AX=dy,则dy=f(X)dX。例如:d(sinX)=cosXdX。如果您需要使用本文档,请点击下载按钮下载!微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进

4、行近似计算的基本思想。积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长宽高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。同时,对于黎曼

5、可积的函数,新积分的定义不应当与之冲突。勒贝格积分就是这样的一种积分。黎曼积分对初等函数和分段连续的函数定义了积分的概念,勒贝格积分则将积分的定义推广到测度空间里。勒贝格积分的概念定义在测度的概念上。测度是日常概念中测量长度、面积的推广,将其以公理化的方式定义。黎曼积分实际可以看成是用一系列矩形来尽可能铺满函数曲线下方的图形,而每个矩形的面积是长乘宽,或者说是两个区间之长度的乘积。测度为更一般的空间中的集合定义了类似长度的概念,从而能够“测量”更不规则的函数曲线下方图形的面积,从而定义积分。在一维实空间中,一个区间A= a,b 的勒贝格测度(A)是区间的右端值减去左端值,ba。这使得勒贝格积分

6、和正常意义上的黎曼积分相兼容。在更复杂的情况下,积分的集合可以更加复杂,不再是区间,甚至不再是区间的交集或并集,其“长度”则由测度来给出。如果您需要使用本文档,请点击下载按钮下载!积分一般分为不定积分、定积分和微积分三种1.0不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。记作f(x)dx。其中叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数

7、的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.2.0定积分众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是无穷无尽的常数,所以f(x)积分的结果有无数个,是不确定

8、的,我们一律用F(x)+C代替,这就称为不定积分。而相对于不定积分,就是定积分。所谓定积分,其形式为f(x) dx (上限a写在上面,下限b写在下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。定积分的正式名称是黎曼积分,详见黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间a,b上的矩形累加起来,所得到的就是这个函数的图象在区间a,b的面积。实际上,定积分的上下限就是区间的两个端点a、b。我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的

9、联系,那么为什么定积分写成积分的形式呢?定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:若F(x)=f(x)那么f(x) dx (上限a下限b)=F(a)-F(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。3.

10、0微积分积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。如果您需要使用本文档,请点击下载按钮下载!其中:F(x) + C = f(x)一个实变函数在区间a,b上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。积分 integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求

11、一条曲线y=F(x),xI,使得它在每一点的切线斜率为F(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作 。如果F(x)是f(x)的一个原函数,则 ,其中C为任意常数。例如, 定积分是以平面图形的面积问题引出的。y=f(x)为定义在a,b上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将a,b分成n等分:a=x0x1xn=b,取ixi-1,xi,记xi=xi-xi-1,则pn为S的近似值,当n+时,pn的极限应可作为面积S。把这一类问题的思想方法

12、抽象出来,便得定积分的概念:对于定义在a,b上的函数y=f(x),作分划a=x0x1xn=b,若存在一个与分划及ixi-1,xi的取法都无关的常数I,使得,其中则称I为f(x)在a,b上的定积分,表为即 称a,b为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式微分一元微分定义:设函数y = f(x)在x.的邻域内有定义,x0及x0 + x在此区间内。如果函数的增量y = f(x0 + x) f(x0)可表示为 y = Ax + o(x)(其中A是不依赖于x的常数),而o(x0)是比x高阶的

13、无穷小,那么称函数f(x)在点x0是可微的,且Ax称作函数在点x0相应于自变量增量x的微分,记作dy,即dy = Ax。通常把自变量x的增量 x称为自变量的微分,记作dx,即dx = x。于是函数y = f(x)的微分又可记作dy = f(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。当自变量X改变为X+X时,相应地函数值由f(X)改变为f(X+X),如果存在一个与X无关的常数A,使f(X+X)-f(X)和AX之差关于X0是高阶无穷小量,则称AX是f(X)在X的微分,记为dy,并称f(X)在X可微。函数可导必可微,反之亦然,这时A=f(X)。再记AX=dy,则d

14、y=f(X)dX。例如:d(sinX)=cosXdX。几何意义:设x是曲线y = f(x)上的点M的在横坐标上的增量,y是曲线在点M对应x在纵坐标上的增量,dy是曲线在点M的切线对应x在纵坐标上的增量。当|x|很小时,|y-dy|比|y|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。多元微分同理,当自变量为多个时,可得出多元微分得定义。运算法则:dy=f(x)dxd(u+v)=du+dvd(u-v)=du-dvd(uv)=duv+dvu如果您需要使用本文档,请点击下载按钮下载!d(u/v)=(duv-dvu)/v2我想知道微积分的具体意义,尤其在几何方面的意义,现实

15、生活中有哪些应用例子.最好能附上函数图分析.分享举报浏览 4451 次4个回答#热议#结婚到底该不该给彩礼?给多少好?cqwangxiping2008-08-22微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用微元与无限逼近,好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,无限细分就是微分,无限求和就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 教学课件 > 初中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号