砼结构防腐机理及处理方法

上传人:平*** 文档编号:16376357 上传时间:2017-11-07 格式:DOC 页数:9 大小:67.99KB
返回 下载 相关 举报
砼结构防腐机理及处理方法_第1页
第1页 / 共9页
砼结构防腐机理及处理方法_第2页
第2页 / 共9页
砼结构防腐机理及处理方法_第3页
第3页 / 共9页
砼结构防腐机理及处理方法_第4页
第4页 / 共9页
砼结构防腐机理及处理方法_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《砼结构防腐机理及处理方法》由会员分享,可在线阅读,更多相关《砼结构防腐机理及处理方法(9页珍藏版)》请在金锄头文库上搜索。

1、砼结构防腐机理及处理方法建筑(ARCHITECTURE),巨大的工艺品。它组成我们赖以生存的不可缺少的空间,建筑也以其优美造型给我们带来愉悦。随着社会的不断进步,随着对环境资源的重视,人们对建筑质量有更高的要求,也越来越重视建筑工程中的腐蚀现象。由于多种因素,在建筑工程中,腐蚀无所不在。腐蚀给国民经济带来巨大的损失,腐蚀给我们生存的建筑空间带来不确定的安全隐患。 所谓腐蚀,是材料与其环境间的物理化学作用引起材料本身性质的变化。 腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。在一个腐蚀系统中,对材料行为起决定作用的是化学成分、结构和表面状态。腐蚀过程中如伴有机械应力的作用,将加速腐蚀而出现

2、一系列特殊的腐蚀现象。但单纯的机械负荷(如拉应力、摩擦、磨损、疲劳等)造成的材料损伤,则不属于腐蚀范畴。 由于电力工程的特点,电力工程建设中存在着大量的腐蚀行为。如何通过设计选材适当、保证施工质量,减轻腐蚀给电力工程带来的负面影响,应成为电力工程技术人员探索的课题。对电力土建专业来说,确保建筑物的耐久性,尤其是保证混凝土结构的耐久性,防止或减少混凝土结构中腐蚀出现,应该成为我们探索的目标。 一、影响混凝土结构的腐蚀性介质 为了确定建筑物不同部位的防护措施,将腐蚀性介质按其形态并结合不同的作用部位分为 5 种:气态介质、腐蚀性水、酸碱盐溶液、固态介质和污染土。各种介质对不同材料的腐蚀程度,可按介

3、质类别、环境相对湿度和作用条件等因素分为强腐蚀性、中等腐蚀性、弱腐蚀性和无腐蚀性共四个等级。 1.气态介质包括腐蚀性气体和以液体为分散相的气溶胶(酸雾、碱雾等),其作用的部位主要是室内外上部建筑结构的构配件。 2.腐蚀性水系指在工业生产过程中受到各种介质污染的工业水(生产水和废水)或地下水,介质在腐蚀性水中的含量较低。腐蚀性水作用的部位主要是地基、基础、污水池、地面和墙面等。 3.酸碱盐溶液:含有不同浓度介质的酸碱盐液体(包括完全潮解或溶解的腐蚀性固体),其作用的部位主要是地面、水沟、墙面、设备基础的地上部位、储槽和污水池等。 4.固态介质包括腐蚀性碱、盐的颗粒、粉尘和以固体为分散相的气溶胶,

4、主要作用于地面、墙面和有上部建筑结构的构配件。 5.污染土系指建筑场地由于生产或自然环境等综合因素造成地基土的污染,主要作用于地下水部位的地下混凝土构筑物。 二、混凝土结构的腐蚀机理 1、素混凝土结构 素混凝土的基本组成材料是水泥、砂、石和水。影响素混凝土结构的耐久性的主要因素为碱-集料的反应(混凝土中碱含量超标,暴露在水或潮湿环境使用时,其中的碱与碱活性集料间发生反应,引起膨胀)。 2、钢筋混凝土结构 钢筋混凝土结构材料是混凝土与钢筋的复合体,它的腐蚀形态可分为两种:一是由混凝土的耐久性不足,其本身被破坏,同时也由于钢筋的裸露、腐蚀而导致整个结构的破坏;二是混凝土本身并未腐蚀,但由于外部介质

5、的作用,导致混凝土本身化学性质的改变或引入了能激发钢筋腐蚀的离子,从而使钢筋表面的钝化作用丧失,引起钢筋的锈蚀。从化学成分来看,钢筋的锈蚀物一般为Fe(OH) 3、Fe(OH) 2、Fe 3O4H2O、Fe 2O3等,其体积比原金属体积增大 24倍。由于铁锈膨胀,对混凝土保护层产生巨大的辐射压力,其数值可达30MPa(大于混凝土的抗拉极限强度)使混凝土保护层沿着锈蚀的钢筋形成裂缝(俗称顺筋裂缝)。这些裂缝进一步成为腐蚀性介质渗入钢筋的通道,加速了钢筋的腐蚀。钢筋在顺缝中的腐蚀速度往往要比裸露情况快,等到混凝土表面的裂缝开展到一定程度,混凝土保护层则开始剥落,最终使构件丧失承载能力。在通常情况下

6、,混凝土空隙中充满了由于水泥水解时产生的氢氧化钙饱和溶液,其碱度很高,pH 值在 12 以上。钢筋在高碱度的环境中,表面沉积一层致密的氢氧化铁薄膜,而转入钝化状态,即使有空气和水分进入,也不可能导致钢筋的腐蚀。当混凝土受到外部因素作用而使混凝土的液相碱度降低时,钢筋由钝化状态转化为活性状态,此时若有空气和水分进入,钢筋便开始生锈。造成混凝土液相碱度降低的原因,一般说来是由于酸性气体与混凝土中氢氧化钙作用的结果。酸性气体沿着混凝土中的空隙或裂缝,从外部逐渐向内部渗透,与混凝土空隙中的氢氧化钙溶液产生中和反应,大大降低了混凝土空隙中氢氧化钙的浓度。空气中的二氧化碳属于酸性气体,它与混凝土中氢氧化钙

7、作用(俗称碳化作用),其反应式如下: Ca(OH) 2CO 2CaCO 3H 2O 生成的碳酸钙为微溶的化合物,其饱和溶液 pH 值为 9,远远小于钢筋保持钝化状态所要求大于 11.5 的数值。其它酸性气体如 SO2、H 2S、HCl、NO x也可以与混凝土中氢氧化钙作用(称为混凝土的中性作用),但它们对钢筋的腐蚀,除了使钢筋成活化状态外,还与它们中性化后生成的盐类的性质、种类有关。 某些卤离子(如 Cl-、I -、Br -)对钝化膜有特殊的破坏作用。它们在钢筋保护层不被碳化或中性化的情况下也可以破坏钢筋钝化膜,使腐蚀过程得以进行。氯离子是这一类离子中最常遇到的。氯离子半径很小,穿透力强,很容

8、易吸附在钢筋阳极区的钝化膜上,取代钝化膜中氧离子,使钢筋起保护作用的氢氧化铁变为无保护作用的氯化铁。氯化铁的溶解度比氢氧化铁的溶解度大得多。由于氯离子到达钢筋表面的不均匀性,特别是氯离子作用在钢筋局部区域时,则局部区域为阳极,形成了大阴极小阳极的腐蚀。这种坑蚀或局部腐蚀对结构的危害较大。 影响混凝土中性化(包括碳化)速度的因素很多,但主要的因素是混凝土的密实度,即抗渗性能。混凝土愈密实,即抗渗性能愈高,则外界的气体只能作用于混凝土表面,向内部渗透比较困难。影响混凝土密实度的主要因素是混凝土的水灰比和单位水泥用量。水泥品种对混凝土的中性化速度有一定的影响;不同品种的水泥,因其掺合料的品种及含量不

9、同,水解时生成的碱性物质数量不同,使混凝土的中性化速度也就不同了。 普通硅酸盐水泥的熟料含量多,掺合料的含量一般不大于 15%,其碱度比其它品种的水泥高,中性化速度相对的要慢。火山灰质硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,由于掺合料中的活性氧化硅与水泥熟料中水解时产生的氢氧化钙结合,从而降低了混凝土孔隙中的液相碱度,加快了碳化或中性化的速度。 3、预应力混凝土结构 预应力混凝土结构的腐蚀除了具有普通混凝土结构的腐蚀类型外,由于采用高强度钢筋和钢筋在高应力条件下工作,所以可能发生应力腐蚀和钢材的氢脆。 (1) 应力腐蚀 应力腐蚀是钢筋在拉应力和腐蚀性介质共同作用下形成的脆性断裂。这种破坏

10、与单纯的机械应力破坏不同,它可以在较低的拉应力作用下破坏;这种破坏又与单纯的电化学腐蚀破坏不同,它可以在腐蚀性介质很弱的情况下而破坏。腐蚀性介质与钢筋作用,在钢筋表面形成一个大小不等弥散分布的腐蚀坑后,每个腐蚀坑相当于一个缺口,钢筋在拉应力的作用下,形成应力的不均匀分布和应力集中,在缺口的边缘,当钢筋平均应力不高时,其集中的应力即可达到断裂应力的水平,而引起钢筋的断裂。由于缺口的存在,形成了拉应力三轴不相等状态,阻碍了钢筋塑性变形的开展,使塑性变形性能在钢筋断裂前不能充分发挥出来,延伸率、冷弯等塑性指标均有明显下降。预应力钢筋的腐蚀是拉应力与腐蚀性介质共同作用的结果,腐蚀因素对钢筋断裂的最初形

11、成起主要作用,而拉应力则促进了腐蚀的发展。 (2) 氢脆 氢脆是预应力钢筋在酸性与微碱性的介质中发生脆性断裂的另一中类型。氢脆与应力腐蚀的机理完全不同。应力腐蚀发生在钢筋的阳极,而氢脆发生在钢筋的阴极区域。氢脆是由于钢筋吸收了原子氢,而使其变脆,所以称为氢脆。钢筋在腐蚀过程中,表面可能有少量氢气产生,在通常情况下,生成的原子氢会迅速结成分子氢,在常温下是无害的,但当这一过程受到阻碍时,氢原子就会向钢筋内部扩散而被吸收到金属内部的晶格中去,如果钢筋内部有缺陷存在,氢原子很可能重新结合成为氢分子。氢分子的生成产生很大的压力,出现鼓泡现象。使钢筋变脆。产生氢脆的钢筋在受到超过临界值的拉力作用时,便会

12、发生断裂。硫化氢是能引起预应力钢筋氢脆的介质之一。 4、纤维混凝土结构 我国工程中常见的纤维混凝土为钢纤维混凝土、玻璃纤维混凝土以及聚丙烯纤维混凝土。它们均是将纤维材料均匀分布在水泥砂浆、混凝土中,用以改变基材的物理力学性能。 纤维混凝土的腐蚀机理与普通混凝土基本相同,但纤维的直径较细,且均匀分布,其耐久性相对普通混凝土要强一些。开裂的纤维混凝土构件在潮湿的环境下,裂缝处的混凝土碳化后,碳化区的钢纤维开始锈蚀。有研究表面,钢纤维混凝土中钢筋的锈蚀较普通混凝土钢筋的锈蚀减轻,其原因除了钢纤维阻裂作用的影响外,还在于细小纤维在混凝土中乱向均匀分布,从而改变了钢筋电化学锈蚀的离子分布状态,阻止了钢筋

13、的锈蚀。 5、轻骨料混凝土结构及加气混凝土 轻骨料混凝土的腐蚀机理与类型基本与普通混凝土相同,由于大多数轻骨料抵抗气体扩散能力较低,腐蚀性气体较易渗入内部,因此必须控制轻骨料混凝土的密实度。 加气混凝土的显气孔较多,不致密,吸水率高,碳化速度较快,在正常使用条件下尚需对钢筋进行表面涂覆保护层,而且加气混凝土表面气孔多,不容易进行保护,所以在腐蚀环境下不宜使用加气混凝土。 三、预防混凝土结构腐蚀的措施 对混凝土结构腐蚀预防应针对其不同的结构组成制定不同的措施。 1、原材料的选择 (1)水泥 水泥是水泥砂浆和混凝土的胶结材料。水泥类材料的强度和工程性能,是通过水泥砂浆的凝结、硬化而形成。水泥石一旦

14、遭受腐蚀,水泥砂浆和混凝土的性能将不复存在。由于各种水泥的矿物质组份不同,因而它们对各种腐蚀性介质的耐蚀性就有差异。正确选用水泥品种,对保证工程的耐久性与节约投资有重要意义。 水泥按其用途及性能要求分为三类,即通用水泥、专用水泥和特殊水泥。 腐蚀环境中水泥品种可按下表选用。 环境条件 优先选用 可以选用 不得选用气态腐蚀 硅酸盐水泥、普通 硅酸盐水泥 矿渣硅酸盐水泥火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥硫酸根离子腐蚀的地下工程 抗硫酸硅酸盐水泥C3A 含量小于 5%的普通硅酸盐水泥、大坝水泥C3A 含量大于 5%的硅酸盐水泥碱液腐蚀C3A 含量不大于 5%的普通硅酸盐水泥或硅酸盐水泥矿渣硅酸盐水

15、泥 高铝水泥地下工程矿渣硅酸盐水泥、火山灰质硅酸盐水泥普通硅酸盐水泥 -液态腐蚀地上工程及有干湿交替作用的地下工程硅酸盐水泥、普通硅酸盐水泥 矿渣硅酸盐水泥火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥预应力混凝土 硅酸盐水泥、普通 硅酸盐水泥 - 高铝水泥(2)、粗、细集料 发生碱-集料反应的必要条件是碱、活性集料和水。粗、细集料的耐蚀性和表面性能对混凝土的耐蚀性能具有很大影响。集料与水泥石接触的界面状态对混凝土的耐蚀性有一定影响。 混凝土中所采用粗细集料,应保证致密,同时控制材料的吸水率以及其它杂质的含量,确保材质状况。我国幅员辽阔,集料种类千差万别,在不少地域均发现过活性集料。这些活性集料共分两类

16、,一类为碱-硅酸反应(ASR),一类为碱-碳酸盐反应(ACR)。施工中要严格加强对活性集料的控制。(3)、拌合及养护用水 混凝土拌合及养护用水,应考虑其对混凝土强度的影响。水灰比的大小很大程度影响混凝土强度值的大小。拌合水应检查其杂质情况,防止影响砂浆及混凝土生成时杂质影响其耐久性。 海水中含有硫酸盐、镁盐和氯化物,除了对水泥石有腐蚀作用外,对钢筋的腐蚀也有影响,因此在腐蚀环境中的混凝土不宜采用海水拌制和养护。 (4)、外加剂 混凝土外加剂是在拌制混凝土过程中掺入,用以改善混凝土性质的物质。 混凝土外加剂的范围很广,品种很多,我国外加剂的品种目前已超过百种,其中包括减水剂、早强剂、加气剂、膨胀剂、速凝剂、缓凝剂、消泡剂、阻锈剂、密实剂、抗冻剂等。 在建筑防腐工程中,外加剂的使用主要是为了提高混凝土密实性或对钢筋的阻锈能力,从而提高混凝土结构的耐久性。实践证明,采用加入外加剂的方法,可以在一定范围内达到提高混凝土结构的耐腐蚀能力,是一种经济而有效的技术措施。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号