【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)

上传人:啥**** 文档编号:159566164 上传时间:2021-01-06 格式:DOC 页数:11 大小:47KB
返回 下载 相关 举报
【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)_第1页
第1页 / 共11页
【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)_第2页
第2页 / 共11页
【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)_第3页
第3页 / 共11页
【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)_第4页
第4页 / 共11页
【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)》由会员分享,可在线阅读,更多相关《【202X最新】《安全环境-环保技术》之城市污水处理厂生物反应池控制优化运行的探讨(通用)(11页珍藏版)》请在金锄头文库上搜索。

1、此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。城市污水处理厂生物反应池控制优化运行的探讨 在污水生物处理过程中,影响微生物活性的因素可分为基质类和环境类两大类。基质类包括营养物质,如以碳元素为主的有机化合物即碳源物质、氮源、磷源等营养物质、以及铁、锌、锰等微量元素;另外,还包括一些有毒有害化学物质如酚类、苯类等化合物、也包括一些重金属离子如铜、镉、铅离子等。环境类影响因素主要有:(1)温度。温度对微生物的影响是很广泛的,尽管在高温环境(5070)和低温环境(-50)中也活跃着某些类的细菌,但污水处理中绝大部分微生物最适宜生长的温度范围是20-30。在适宜的温

2、度范围内,微生物的生理活动旺盛,其活性随温度的增高而增强,处理效果也越好。超出此范围,微生物的活性变差,生物反应过程就会受影响。一般的,控制反应进程的最高和最低限值分别为35和10。(2)PH值。活性污泥系统微生物最适宜的PH值范围是6.5-8.5,酸性或碱性过强的环境均不利于微生物的生存和生长,严重时会使污泥絮体遭到破坏,菌胶团解体,处理效果急剧恶化。(3)溶解氧。对好氧生物反应来说,保持混合液中一定浓度的溶解氧至关重要。当环境中的溶解氧高于0.3mg/l时,兼性菌和好氧菌都进行好氧呼吸;当溶解氧低于0.2-0.3mg/l接近于零时,兼性菌则转入厌氧呼吸,绝大部分好氧菌基本停止呼吸,而有部分

3、好氧菌(多数为丝状菌)还可能生长良好,在系统中占据优势后常导致污泥膨胀。一般的,曝气池出口处的溶解氧以保持2mg/l左右为宜,过高则增加能耗,经济上不合算。在所有影响因素中,基质类因素和PH值决定于进水水质,对这些因素的控制,主要靠日常的监测和有关条例、法规的严格执行。对一般城市污水而言,这些因素大都不会构成太大的影响,各参数基本能维持在适当范围内。温度的变化与气候有关,对于万吨级的城市污水处理厂,特别是采用活性污泥工艺时,对温度的控制难以实施,在经济上和工程上都不是十分可行的。因此,一般是通过设计参数的适当选取来满足不同温度变化的处理要求,以达到处理目标。因此,工艺控制的主要目标就落在活性污

4、泥本身以及可通过调控手段来改变的环境因素上,控制的主要任务就是采取合适的措施,克服外界因素对活性污泥系统的影响,使其能持续稳定地发挥作用。实现对生物反应系统的过程控制关键在于控制对象或控制参数的选取,而这又与处理工艺或处理目标密切相关。前已述及溶解氧是生物反应类型和过程中一个非常重要的指示参数,它能直观且比较迅速地反映出整个系统的运行状况,运行管理方便,仪器、仪表的安装及维护也较简单,这也是近十年我国新建的污水处理厂基本都实现了溶解氧现场和在线监测的原因。对于有特殊处理要求或某项指标成为处理过程的限制因素时,也可将出水的某项指标作为控制参数。例如,对出水中氨氮或硝酸盐氮有严格限制时,限制的指标

5、可以被选取作为控制参数。这需要在反应池内设置氨氮和硝酸盐氮以及亚硝酸盐氮的监测仪表,将现场监测到的数据反馈到控制系统,通过改变供气量的多少来增强或减弱某一生物反应(硝化或反硝化),从而达到所希望的出水指标。这一控制方式在国外有应用,如美国奥兰多(Orlando)的一个Water Reclamation Facility,该厂在1986年扩建时并无对出水中硝酸盐氮控制的要求,但在1992年,佛罗里达州环境保护部对所有处理设施增加了出水硝酸盐氮需在10mg/l以下的限制要求。在不改动处理构筑物的条件下,该厂通过增设现场仪表,采取自动控制供气量的方式达到了处理要求。但在我国,以采集这类水质指标为控制

6、参数的控制方式尚未见有应用实例,其原因可能是此类参数的在线监测仪表十分昂贵,特别是如硝酸盐氮等在线监测仪表基本上得依赖于国外进口。因此,现阶段这种控制方式在我国还难以实施。1、解氧控制生物池溶氧值的运行控制是污水处理厂中至为重要的环节,该运行控制品质的好坏,直接关系到出水质量和污水厂的能耗的高低。溶解氧控制的主要目标是:确保供氧量满足有机物氧化分解过程动态变化的需要并且维持一个期望的混合液DO浓度;有效的控制氧气的传输以最大限度的减小曝气能耗;最大限度地减少实现这一目标所需的人力。污水处理厂实行曝气运行控制的益处在于降低运行成本。曝气池中DO浓度持续不足可抑制生物活性,会在处理过程中产生一些问

7、题,如污泥膨胀,絮凝效果差,抑制硝化作用。相反,过度曝气会造成能量过度消耗。提高过程的可靠性、除氮效率、污泥可沉淀性及出水水质等都归功于DO的控制。曝气能量的消耗一般约占普通活性污泥法污水处理厂能源总需求的50%以上,曝气过程有效的运行控制能大大节省能耗。需氧量的变化使得操作人员很难手动控制空气流速和空气分配量,从而在整个处理过程中难以维持期望的混合液DO浓度值,即使对于设计得很好且有灵活曝气系统的污水处理厂也是如此。因此,手动调节曝气系统一般在空气流量分配固定的情况下使用,通常是每周或每月调一两次。手动调节空气流量使其固定在一个足够高的值上,以满足峰值负荷期间的需氧量,但这样却导致了负荷降低

8、期间不必要的昂贵的过量曝气。自动DO控制是曝气系统运行控制的最佳方式,它可以最大限度地减小与曝气不足或过量有关的运行问题,最大限度地减少曝气能量消耗。一般来说,采用自动控制曝气的方式节能可达25%40%。在生物反应过程中,溶解氧的变化率可用下式表示:dc/dt =Kla(Cs- C)-式中:dc/dt-溶解氧的变化率(mg/(Loh))Kla-氧在清水中的总转移系数(h-1)Kla-氧在污水中的总转移系数(h-1)Cs-氧在清水中的溶解度(mg/L)Cs-氧在污水中的溶解度(mg/L)C-氧在污水中的实际浓度(mg/L)-生物池中氧的消耗速率(mg/(Loh))生化反应需氧量决定生物池中氧的消

9、耗速率,如不考虑硝化作用,则碳化需氧量O2表示为:O2 = aQ(So-Se)+bVX式中:Q(So-Se)-基质去除量(kg/d)VX-微生物量(kg)a-常数(kg O2 /kg基质)b-常数(微生物内呼吸需氧率d-1)当氧传递速率Kla (Cs - C)与耗氧速率相等,即传氧与耗氧达到平衡时,dc/dt=0,溶解氧浓度保持相对稳定。当耗氧速率上升时,dc/dt0,C和氧传递速率朝与上述相反的方向变化,直至氧传递速率与耗氧速率在较高的溶解氧水平上达到新的平衡。对于耗氧速率,由于生物反应池中微生物量相对稳定,因而进水流量和进水BOD5是导致耗氧速率变化的直接因素,BOD5目前尚不易实现连续在

10、线监测,故不能得到Q(So-Se)的实时数据。因此,溶解氧浓度成为生化反应过程中氧传递速率和耗氧速率平衡状况的关键指示值,也是曝气控制的重要被调参数。基于上述氧传递原理,为最大程度的节约能源,对于推流式生物反应池,延其流向溶解氧可按梯度设定,即进入口附近溶解氧可以控制在最低水平,出水口附近溶解氧控制在2mg/l左右,以保证污泥良好的沉降特性,使出水水质稳定达标。而对于完全混合式生物反应池,也可分区域控制溶解氧的浓度,如奥贝尔氧化沟采用外、中、内沟溶解氧分别控制在0-1-2的范围内。对于溶解氧浓度的控制,由于其动态过程是非线性的、时变的、滞后的,因此在确定控制方案时应选择理想控制和维持控制器的稳

11、定性两者之间的折中方案,即控制器在某种程度上不可调或断续调节,以适应溶解氧变化的动态过程。 大中型城市污水处理厂多有数个生物池,根据工艺有两种运行方式:1)生物池的曝气量分配不同,有不同的溶氧控制目标值,如采用AB法的海泊河污水处理厂,由于鼓风机输出气量不能平均分配,需要在输气管道出口安装电动阀来调节气量的分配。运行控制采用2个独立的调节回路,1个调节回路是根据DO的变化调节相应管路的风量阀门,另1个调节回路是根据管道压力变化来调节鼓风机进口导叶片或出口扩压器叶片。其控制系统简图如下所示。实地测量海泊河污水处理厂生物池在各种不同控制条件下的数据,结果表明,只有在调节阀门之后根据总管压力调节扩压

12、器叶片,鼓风机能耗才能保持最小,所以最经济的方法是尽量开大阀门以减少管道的损耗,以调节扩压器叶片调节风量为主,阀门开度调节为辅。2)生物池的运行条件完全一样,也有同样的溶解氧控制目标值,如李村河污水处理厂。这种情况从原理上讲应平均分配气量,虽然在实际运行中,各个生物池的运行状态不可能完全一样,各个池子的溶氧值有一些差异,但是由于差异比较小,而且变化和扰动情况相似,可以采用手动阀门,在污水处理厂运行初期人工调节气量的分配,以获得调节经验,稳定运行后,阀门开度基本可以固定下来,这样可以降低成本减少运行控制的复杂程度。其控制系统简图如下所示。如前面对鼓风机的分析中所述,出口节流是经济性最差的方案,但

13、是在第一种请况下,为了满足气量分配的要求又必须采用出口节流。设计适合这种工艺条件的控制系统时,要尽量减少阀门阻力,尽量保持阀门阀门开度量大,以减小鼓风机的功率损耗。此外,为防止发生喘振,也应控制阀门的开度,防止阀门开度过小,流量减小,会使鼓风机性能工况点移到喘振区。控制系统应考虑下面三种情况:1)所有生物池的溶氧值均偏高。这时应调节鼓风机的导叶片,降低风量。如果此时有多台鼓风机在运行,应调节累计运行时间长的两台鼓风机的导叶片,使其流量降低,当这两台鼓风机流量之和再加上一预先设定值后小于单台鼓风机气量时,关闭运行时间最长的鼓风机。设定值的作用是设置了一个缓冲区,以避免鼓风机的频繁启停。2)生物池

14、的溶氧值有的偏高,有的偏低。这时应先根据溶氧值调节出口阀门,进行气量的重新分配,鼓风机则根据空气总管的压力调节导叶片,以维持总管压力的稳定,如果阀门开度均已达到最大,而溶氧值还未达到目标,则应调节鼓风机导叶片增加鼓风机的流量。3)所有生物池的溶氧值均偏低。这时应逐步增加阀门的开度,减小管网阻力,当阀门开度达到最大时,溶氧值还未达标,则应调节鼓风机的导叶片增加流量。如果在设定时间内,溶氧值还未达标,应增加开启一台鼓风机。此设定时间为溶解氧测量系统的时间常数,一般约为10分钟到半小时。由于溶氧值测量存在滞后,溶氧值的控制目标值不应设定为一固定值,而应设定一个控制死区,例如,当期望的溶氧值是1.5m

15、g/l时,可以设定溶氧值的控制区间为1.0mg/l-2.0mg/l,这样可以使得鼓风机的启停间隔时间延长,保护风机,节约电耗,但是控制效果会有一些下降。由于曝气池的主要目的是保证生物的活性而且仪表测量本身有一定的不稳定性,只要死区设置得当,这种控制对曝气效果的影响甚微。为了达到需要的溶氧值,测量溶氧值的溶氧仪的安装位置应根据工艺选定,自控系统获得的溶氧值最好是几台溶氧仪的平均值,以减少测量误差。导叶片和扩压器的调节一般采用PID闭环控制。在确定的运行条件下,应该能够找到一组最佳的控制参数。但是对于DO浓度控制,由于其动态过程是非线性的,随时间、温度、水质等参数变化,实现理想的控制需要随时调节PID参数,参数不断变化会和控制器的稳定性之间产生矛盾,所以固定PID参数,以便在较大的范围内实现充分控制是比较好的方案。如果条件允许,可以根据运行情况的变化,在不同的时间,设置不同的控制参数,例如,为适应季节性DO浓度变化,可以在不同的季节设置不同的控制参数。空气管道出口阀门的调节如果采用PID调节,会使阀门的开度产生震荡,从而影响到对鼓风机的调节。所以,阀门的调节以步进调节为好,步进的幅度宜小不宜大,宜慢不宜快,以配合溶解氧测定的速度。溶氧控制系统需要设置的仪表:气体流量计,压力计,温度计,溶氧仪。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号