高考物理动能与动能定理练习题及解析

上传人:灯火****19 文档编号:157357412 上传时间:2020-12-22 格式:DOCX 页数:15 大小:241.42KB
返回 下载 相关 举报
高考物理动能与动能定理练习题及解析_第1页
第1页 / 共15页
高考物理动能与动能定理练习题及解析_第2页
第2页 / 共15页
高考物理动能与动能定理练习题及解析_第3页
第3页 / 共15页
高考物理动能与动能定理练习题及解析_第4页
第4页 / 共15页
高考物理动能与动能定理练习题及解析_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《高考物理动能与动能定理练习题及解析》由会员分享,可在线阅读,更多相关《高考物理动能与动能定理练习题及解析(15页珍藏版)》请在金锄头文库上搜索。

1、高考物理动能与动能定理练习题及解析一、高中物理精讲专题测试动能与动能定理1 如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R=1.0m 的圆环剪去了左上角 120的圆弧, MN 为其竖直直径,P 点到桌面的竖直距离是h=2.4m。用质量为m=0.2kg 的物块将弹簧由 B 点缓慢压缩至 C 点后由静止释放,弹簧在 C 点时储存的弹性势能 Ep=3.2J,物块飞离桌面后恰好 P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数=0.4,重力加速度 g 值取 10m/s 2,不计空气阻力,求(1)物块通过 P

2、 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小;(3)C、D 两点间的距离;【答案】 (1)8m/s ;(2)4.8N; (3)2m【解析】【分析】【详解】(1)通过 P 点时,由几何关系可知,速度方向与水平方向夹角为60o,则vy22ghsin 60ovyv整理可得,物块通过P 点的速度v8m/s(2)从 P 到 M 点的过程中,机械能守恒1mv2 =mgR(1cos60o )+1mvM222在最高点时根据牛顿第二定律mvM2FNmgR整理得FN4.8N根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从 D 到 P 物块做平抛运动,因此vDv cos60o4m/s从

3、 C 到 D 的过程中,根据能量守恒定律Epmgx1 mvD22C、D 两点间的距离x2m2 如图所示,在某竖直平面内,光滑曲面AB 与水平面 BC 平滑连接于 B 点, BC右端连接内壁光滑、半径 r=0.2m 的四分之一细圆管CD,管口 D 端正下方直立一根劲度系数为k=100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为 1kg 的小球放在曲面 AB 上,现从距 BC的高度为 h=0.6m 处静止释放小球,它与BC间的动摩擦因数=0.5,小球进入管口 C 端时,它对上管壁有FN=2.5mg 的相互作用力,通过 CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E

4、p=0.5J。取重力加速度 g=10m/s2。求:(1)小球在 C 处受到的向心力大小;(2)在压缩弹簧过程中小球的最大动能Ekm;(3)小球最终停止的位置。【答案】 (1)35N; (2)6J; (3)距离 B 0.2m 或距离 C 端 0.3m【解析】【详解】(1)小球进入管口 C 端时它与圆管上管壁有大小为 F 2.5mg 的相互作用力故小球受到的向心力为F向2.5mgmg3.5mg3.5 1 1035N(2)在 C 点,由v2F向 =c代入数据得1 mvc2 3.5J2在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为x0则有kx0mg解得x0mg0.1mk设最大速度位

5、置为零势能面,由机械能守恒定律有mg(r x0 )1 mvc2EkmE p2得Ekmmg (r x0 )1 mvc2Ep33.5 0.56J2(3)滑块从 A 点运动到 C 点过程,由动能定理得mg 3rmgs1 mvc22解得 BC间距离s0.5m小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC水平面相互作用的过程中,设物块在BC上的运动路程为s ,由动能定理有mgs1mvc22解得s0.7m故最终小滑动距离B 为 0.7 0.5m0.2m 处停下 .【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何

6、关系求解。3 如图所示,竖直平面内有一固定的光滑轨道ABCDAB是足够长的水平轨道,B端,其中与半径为 R 的光滑半圆轨道 BCD 平滑相切连接,半圆的直径BD 竖直, C 点与圆心 O 等高现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与 Q 发生对心碰撞 ,碰撞后瞬间小球 Q 对半圆轨道 B 点的压力大小为自身重力的 7 倍,碰撞后小球 P 恰好到达 C 点 重力加速度为 g(1)求碰撞前小球P 的速度大小;(2)求小球Q 离开半圆轨道后落回水平面上的位置与B 点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q 离开半

7、圆轨道D 点后落回水平面上的位置与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】 (1)( 2)( 3)【解析】【分析】【详解】设小球 Q 在 B 处的支持力为;碰后小球的速度为;小球 Q 到达 D 点的速度为(1)由牛顿第三定律得小球Q 在 B 点Q 的速度为.,小球P 的速度为;碰前小球P碰后小球Q 在B 点由牛顿第二定律得:碰后小球P 恰好到 C 点,由动能定理得:P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够到达D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决本题

8、时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键4 如图所示,倾角为=45的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内一质量为m 的小滑块从导轨上离地面高为h=3R 的 D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:( 1)滑块运动到圆环最高点C 时的速度的大小;( 2)滑块运动到圆环最低点时对圆环轨道压力的大小;( 3)滑块在斜面轨道 BD 间运动的过程中克服摩擦力做的功【答案】( 1)Rg ( 2) 6mg ( 3) 1

9、mgR2【解析】【分析】【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为vC 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从 D 到最低点过程中,设DB 过程中克服摩擦力做功W1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点 C 水平飞出,恰好击中导轨上与圆心 O 等高的 P 点,运用平抛运动规律结合几何关系求出最低点时速度在对最低点运用牛顿第二定律求解5 如图所示,在倾角为=37

10、的斜面底端有一个固定挡板D,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑, PO 部分粗糙且长度L=8m。质量 m=1kg 的物块(可视为质点)从P 点静止开始下滑,已知物块与斜面PO 间的动摩擦因数 =0.25, g 取 10m/s 2, sin37 =0.6, cos37=0.8。求:( 1)物块第一次接触弹簧时速度的大小( 2)若弹簧的最大压缩量 d=0.5m,求弹簧的最大弹性势能(3)物块与弹簧接触多少次,反弹后从O 点沿斜面上升的最大距离第一次小于0.5m【答案】( 1) 8m/s (2) 35J(3)5 次【解析】【详解】(1)物块在 PO 过程中

11、受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦力,此过程应用动能定理得:mgL sinmgL cos1 mv22解得物块第一次接触弹簧时物体的速度的大小为:v2gL sincos8 m/s(2)物块由O 到将弹簧压缩至最短的过程中,重力势能和动能减少、弹簧的弹性势能增加,由能量守恒定律可得弹簧的最大弹性势能EpEp1 mv2mgd sin35 J2(3)物块第一次接触弹簧后,物体从O 点沿斜面上升的最大距离s1 ,由动能定理得 :mgs1mgs1 cos01mv22解得: s14m物块第二次接触弹簧后,物块从O 点沿斜面上升的最大距离s2 ,由动能定理得:mg sin(s1s2 )mg cos(s1s2 ) 0解得: s2

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号