物理高考物理生活中的圆周运动练习题含解析

上传人:灯火****19 文档编号:157357404 上传时间:2020-12-22 格式:DOCX 页数:12 大小:405.47KB
返回 下载 相关 举报
物理高考物理生活中的圆周运动练习题含解析_第1页
第1页 / 共12页
物理高考物理生活中的圆周运动练习题含解析_第2页
第2页 / 共12页
物理高考物理生活中的圆周运动练习题含解析_第3页
第3页 / 共12页
物理高考物理生活中的圆周运动练习题含解析_第4页
第4页 / 共12页
物理高考物理生活中的圆周运动练习题含解析_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《物理高考物理生活中的圆周运动练习题含解析》由会员分享,可在线阅读,更多相关《物理高考物理生活中的圆周运动练习题含解析(12页珍藏版)》请在金锄头文库上搜索。

1、【物理】物理高考物理生活中的圆周运动练习题含解析一、高中物理精讲专题测试生活中的圆周运动1 光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R 0.5 m,一个质量m 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接用手挡住小球不动,此时弹簧弹性势能 Ep 49 J,如图所示放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g 取 10 m/s 2求:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小【答案】 (1) 7m / s ( 2) 24J ( 3) 25J【解析】【分析】【详解】

2、(1)根据机械能守恒定律Ep1 mv12 ?212Ep 7m/s v m(2)由动能定理得 mg2R Wf 1mv221mv1222小球恰能通过最高点,故 mgm v22R由得Wf 24 J(3)根据动能定理:mg 2R Ek1 mv222解得: Ek25J故本题答案是: ( 1) 7m / s ( 2) 24J( 3) 25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从B 至

3、 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小2 如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,物体绕轴,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。【详解】若小球刚好离

4、开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。3 如图所示,光滑轨道CDEF 是一 “过山车 ”的简化模型,最低点 D处入、出口不重合,E 点是半径为 R 0.32m的竖直圆轨道的最高点, DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=

5、1m/s 逆时针匀速转动,水平部分长度L=1m物块 B静止在水平面的最右端F 处质量为 mA 1kg 的物块 A 从轨道上某点由静止释放,恰好A B通过竖直圆轨道最高点E,然后与发生碰撞并粘在一起若的质量是A的k倍,BB、与传送带的动摩擦因数都为0.2 ,物块均可视为质点,物块A 与物块 B 的碰撞时间极短,取 g 10m / s2求:( 1)当 k 3 时物块 A、B 碰撞过程中产生的内能;( 2)当 k=3 时物块 A、B 在传送带上向右滑行的最远距离;(3)讨论 k 在不同数值范围时,A、B 碰撞后传送带对它们所做的功W 的表达式【答案】 (1) 6J( 2) 0.25m( 3) W2

6、k1 J Wk 22k 152 k1【解析】(1)设物块 A 在 E 的速度为 v0 ,由牛顿第二定律得:mA gmAv02,R设碰撞前 A 的速度为 v1 由机械能守恒定律得:2mA gR1 mAv021 mAv12 ,22联立并代入数据解得:v14m / s;设碰撞后 A、B 速度为 v2 ,且设向右为正方向,由动量守恒定律得mAv1mA m2 v2 ;mAv1141m / s ;解得: v2mB13mA由能量转化与守恒定律可得:1212QmAv1mAmBv2 ,代入数据解得Q=6J ;22(2)设物块 AB 在传送带上向右滑行的最远距离为s,由动能定理得:mAmBgs1 mAmBv22,

7、代入数据解得 s0.25m ;2(3)由式可知: v2mAv14m / s ;mAmB1k(i )如果 A、 B 能从传送带右侧离开,必须满足1 mAmBv22mAmBgL ,2解得: k 1,传送带对它们所做的功为: WmAmBgL2 k1 J;(ii )( I)当 v2v 时有: k3 ,即 AB 返回到传送带左端时速度仍为v2 ;由动能定理可知,这个过程传送带对AB 所做的功为: W=0J,(II)当0 k时, AB 沿传送带向右减速到速度为零,再向左加速,当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧在这个过程中传送带对AB 所做的功为 W1mAmBv21mAmBv22 ,

8、22k 22k15解得 Wk;21【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解 A 恰好通过最高点E,由牛顿第二定律求出A 通过 E 时的速度,由机械能守恒定律求出 A 与 B 碰撞前的速度,A、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离根据A、B 速度与传送带速度间的关系分析 AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功4 如图所示,质量 m=3kg 的小物块以初速度秽v0=4m/s 水平向右抛

9、出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R= 3.75m,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 平滑连接, A 与圆心D 的连线与竖直方向成 37 角, MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数=0.1,轨道其他部分光滑。最右侧是一个半径为 r =0.4m 的半圆弧轨道, C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在 D点平滑连接。已知重力加速度g=10m/s 2, sin37=0.6, cos37=0.8。( 1)求小物块经过 B 点时对轨道的压力大小;( 2)若 MN 的长度为 L0=6m,求小物块通过 C 点时对轨道的压力大小;(3)若小物块恰好能通过C 点,求 MN 的长度 L。【答案】( 1) 62N( 2) 60N( 3)10m【解析】【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:v0 vA cos37解得: vAv04 m / s 5m / scos370.8小物块经过 A 点运动到 B 点,根据机械能守恒定律有:1 mvA2mg R Rcos371 mvB222小物块经过 B 点时,有: FNBmg m vB2R解得: FNBmg 32cos37m vB262NR根据牛顿第三定律,小物块对轨道的压力大小是62N

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号