炼焦第04章

上传人:油条 文档编号:1562766 上传时间:2017-06-26 格式:PPT 页数:140 大小:1.46MB
返回 下载 相关 举报
炼焦第04章_第1页
第1页 / 共140页
炼焦第04章_第2页
第2页 / 共140页
炼焦第04章_第3页
第3页 / 共140页
炼焦第04章_第4页
第4页 / 共140页
炼焦第04章_第5页
第5页 / 共140页
点击查看更多>>
资源描述

《炼焦第04章》由会员分享,可在线阅读,更多相关《炼焦第04章(140页珍藏版)》请在金锄头文库上搜索。

1、炼焦炉,第四章,炼焦炉,第一节 炉体构造第二节 炉型特性第三节 炉型举例第四节 焦炉结构的发展方向,炼焦炉,第一节 炉体构造 一、炼焦炉的发展阶段及现代焦炉的基本要求 焦炉是炼制焦炭的工业窑炉,焦炉结构的发展大致经过四个阶段,即成堆干馏(土法炼焦)、倒焰式焦炉、废热式焦炉和现代的蓄热式焦炉。 我国早在明代就出现了用简单的方法生产焦炭的工艺,它类似于堆式炼制木炭,将煤置于地上或地下的窑中,依靠干馏时产生的煤气和部分煤的直接燃烧产生的热量来炼制焦炭,称为成堆干馏或土法炼焦。土法炼焦成焦率低,焦炭灰分高,结焦时间长,化学产品不能回收,还造成了环境污染,综合利用差。,炼焦炉,焦炉的发展趋势应满足下列要

2、求: (1)生产优质产品 为此焦炉应加热均匀,焦饼长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失。 (2)生产能力大,劳动生产率和设备利用率高。为了提高焦炉的生产能力,应采用优质耐火材料,从而可以提高炉温,促使炼焦速度的提高。 (3)加热系统阻力小,热工效率高,能耗低。 (4)炉体坚固、严密、衰老慢、炉龄长。 (5)劳动条件好,调节控制方便,环境污染少。,炼焦炉,二、现代焦炉炉体各主要部位 现代焦炉虽有多种炉型,但无非是因火道结构、加热煤气种类及其入炉方式、蓄热室结构及装煤方式的不同而进行的有效排列组合。焦炉结构的变化与发展,主要是为了更好的解决焦饼高向与长向的加热均匀性,节能降耗

3、,降低投资及成本,提高经济效益。为了保证焦炭、煤气的质量及产量,不仅需要有合适的煤配比,而且要有良好的外部条件,合理的焦炉结构就是用来保证外部条件的手段。为此,需从焦炉结构的各个部位加以分析,现代焦炉炉体最上部是炉顶,炉顶之下为相间配置的燃烧室和炭化室,炉体下部有蓄热室和连接蓄热室与燃烧室的斜道区,每个蓄热室下部的小烟道通过废气开闭器与烟道相联。烟道设在焦炉基础内或基础两侧,烟道末端通向烟囱,故也称焦炉由三室两区组成,即炭化室、燃烧室、蓄热室、斜道区、炉顶区和基础部分。如图4-1。,炼焦炉,图4 1 焦炉炉体结构模型图,炼焦炉,1炭化室 炭化室是接受煤料,并对其隔绝空气进行干馏的炉室。一般由硅

4、质耐火材料砌筑而成。炭化室位于两侧燃烧室之间,顶部有34个加煤孔,并有12个导出干馏煤气的上升管。它的两端为内衬耐火材料的铸铁炉门。整座焦炉靠推焦车一侧称为机侧,另一侧称为焦侧。顶装煤的焦炉,为顺利推焦,炭化室的水平呈梯形,焦侧宽度大于机侧,两侧宽度之差称锥度,一般焦侧比机侧宽2070mm,炭化室愈长,此值愈大,大多数情况下为50mm。捣固焦炉由于装入炉的捣固煤饼机、焦侧宽度相同,故锥度为零或很小。炭化室宽度一般在400550mm之间,宽度减小,结焦时间能大大缩短,但是一般不小于350mm。,炼焦炉,因宽度太窄会使推焦困难,操作次数频繁和耐火材料用量增加。炭化室长度为1316m,从推焦机械性能

5、来看,该长度已接近最大限度。炭化室高度一般为46m(国外可达8m或以上),增加高度可以增加生产能力,但受高度方向加热均匀性的限制。增大炭化室的容积是提高焦炉生产能力的主要措施之一,一般大型焦炉的炭化室有效容积为2140m3,我国5.5m高的大型焦炉为35.4m3,6m高的大型焦炉为38.5m3。国外近年来的大型焦炉的有效容积已达5080m3。炭化室尺寸的确定,通常受到多种因素的影响。下面分别叙述有关的影响因素。,炼焦炉,(1)炭化室的宽度 炭化室的宽度对焦炉的生产能力与焦炭质量均有影响,增加宽度虽然焦炉的容积增大,装煤量增多,但因煤料传热不良,随炭化室宽度的增加,结焦速度降低,结焦时间大为延长

6、。如表4-1所示(火道温度按13001350)。因此宽度不宜过大,否则反而降低了生产能力。宽度减小,结焦时间大为缩短,但不应太窄,否则推焦杆强度降低,推焦困难。且结焦时间缩短后,操作次数增加,按生产每吨焦炭计,所需操作时间增多,增加污染,耐火砖用量也相应增加,从而降低了生产能力。,炼焦炉,表4-1 炭化室宽度与结焦速度的关系,炼焦炉,炼焦炉,炼焦炉,炼焦炉,焦炭产量W=15*6*x/1000炭化时间T=3.1706e0.0039x焦炭产率V=W/T=0.02839x.e-0.0039x当:dV/dx=0.02839e-0.0039x(1-.0.0039x)=0即:0.0039x=1时,V有极大

7、值即:x=256.4mm时,焦炭产率最大,炼焦炉,此外,炭化室宽度对煤料的炼焦速度、膨胀压力及焦炭的平均块度等因素均有影响,具体表现为: 干馏过程的传热,是炭化室两侧的燃烧室通过炉墙,向炭化室中心的单向不稳定传热。由于煤料的导热系数远低于硅砖,即干馏过程中传热的热阻主要来自煤料。当装炉煤水分、挥发分、堆密度保持不变时,结焦时间与炭化室宽度之间的关系,可由下式近似计算: (4-1),炼焦炉,式中 bl、b2 炭化室宽度,mm; 1、2 宽度分别为bl、b2的炭化室内煤料的结焦时间,h; tf 平均火道温度,; t 焦饼中心温度,。通常将炭化室宽度与结焦时间的比值称为干馏速度。 (4-2)式中 V

8、C 炼焦速度,mmh。,炼焦炉,将上式代入式(4-1),并整理后得: (4-3) 因为,1; 所以,当blb2时,则VC1VC2。 也就是说在相同的火道温度条件下,炭化室越窄,炼焦速度就越快。,炼焦炉,高温干馏过程中煤料给予炭化室炉墙的膨胀压力,起因于胶质体层内的煤气压力,其值大小因装炉煤料性质、颗粒组成、堆密度以及燃烧室温度不同而异,也与炭化室宽度有关。 由于炭化室越宽,干馏速度越慢,所以胶质体层内煤气压力就越低。因此,同一煤料在不同炭化室内干馏时,炉墙实际承受的负荷是随着炭化室宽度增加而略有减小。如图4-2所示。 炭化室膨胀压力危险值约15kPa左右,故允许承受的极限负荷约710kPa。因

9、此当装炉煤的膨胀压力偏高时宜采用宽炭化室。,炼焦炉,图4-2膨胀压力与炭化室宽度的关系,炼焦炉,焦炭碎成小块,起因于裂纹。焦块的统计平均尺寸大小取决于裂纹之间的距离。而裂纹的间距与裂纹的深度取决于不均匀收缩所产生的内应力。在相同的结焦温度下,焦炭块度随着炭化室宽度增加而加大。与此同时,当煤料和干馏条件相同时,炭化室越宽,由于结焦速度减慢而使焦炭裂纹减少,故焦炭的抗碎强度也越高。 但是,从生产能力与技术经济指标来看,由于随着宽度增加结焦时间将延长,每孔炭化室单位时间出焦率将随着宽度增加而降低。,炼焦炉,所以,在一定范围内,炭化室宽度越窄,生产能力将越高。故应综合考虑确定炭化室宽度,对黏结性好的煤

10、料宜缓慢加热,否则在半焦收缩阶段,应力过大,焦炭裂纹较多,小块焦增加,因此炭化室以较宽些为宜。对于黏结性较差的煤料,快速加热能改善其黏结性,对提高焦炭质量有利,故以较窄的炭化室为好。58型焦炉炭化室的平均宽取407mm和450mm两种规格,大容积焦炉的平均宽度仍为450mm,目前有些新建焦炉宽度为500mm;小型焦炉炭化室的平均宽度为300mm左右。,炼焦炉,(2)炭化室长度 焦炉的生产能力与炭化室长度成正比,而单位产品的设备造价随炭化室长度增加而显著降低。因此,增加炭化室长度有利于提高产量,降低基建投资和生产费用,但长度的增加受下列因素的限制: 受炭化室锥度与长向加热均匀性的限制,因为炭化室

11、锥度大小是取决于炭化室长度和装炉煤料的性质。一般情况下,煤料挥发分不高,收缩性小时,要求锥度增加。而随着炭化室长度的增加,锥度也增大。国内大容积焦炉炭化室的长度为15980mm,锥度为70mm;卡尔斯蒂式焦炉炭化室长度为17090mm,锥度为76mm。随着炭化室长度和锥度的增大,长向加热均匀性问题就比较突出,导致局部产生生焦,这不仅使质量和产率降低,而且使粉焦量显著增加。,炼焦炉, 受推焦阻力及推焦杆的热态强度的限制。随着炭化室长度的增加,不仅由于长向加热不均匀使粉焦量增加而促使推焦阻力增大,还由于焦饼重量增加,焦饼与炭化室墙面、底面之间的接触面增加,从而使整个推焦阻力显著升高。 随着炭化室长

12、度的增加,推焦杆的温度在推焦过程中逐渐上升,而一般钢结构的屈服点随着温度升高而降低,到400时,约降低1/3。因此,炭化室长度增加也受此限制。此外,炭化室长度还受到技术装备水平和炉墙砌砖的限制。,炼焦炉,(3)炭化室高度 大型焦炉一般为46m,增加炭化室高度是提高焦炉生产能力的重要措施,且由于煤料堆密度的增加而有利于焦炭质量的提高。但是随着高度的增加,为使炉墙具有足够的强度,就必须相应增大炭化室的中心距及炭化室与燃烧室的隔墙厚度。为了保证高向加热均匀性,势必在不同程度上引起燃烧室结构的复杂化。为了防止炉体变形和炉门冒烟,应有坚固的护炉设备和有效的炉门清扫机械。凡此种种,使每个炭化室的基建投资及

13、材料消耗增加。因此,应以单位产品的各项技术经济指标进行综合平衡,选定炭化室高度的适宜值。目前大型焦炉的高度一般不超过8m。 综上所述,由炭化室的长、宽和高度所决定的炭化室的容积,必须与焦炉的规模,煤质及所能提供的技术装备水平等情况相适应,因此不能脱离实际,片面的追求焦炉炭化室的大型化。,炼焦炉,2燃烧室 燃烧室位于炭化室两侧,其中分成许多火道,煤气和空气在其中混合燃烧,产生的热量传给炉墙,间接加热炭化室中煤料,对其进行高温干馏。燃烧室数量比炭化室多一个,长度与炭化室相等,燃烧室的锥度与炭化室相等但方向相反,以保证焦炉炭化室中心距相等。一般大型焦炉的燃烧室有2632个立火道,中小型焦炉仅为121

14、6个。燃烧室一般比炭化室稍宽,以利于辐射传热。(1)结构形式与材质 燃烧室内用横墙分隔成若干个立火道,通过调节和控制各火道的温度,以便使燃烧室沿长度方向能获得所要求的温度分布,而且又增加了燃烧室砌体的结构强度,并由于增加了炉体的辐射传热面积,从而有利于辐射传热。,炼焦炉,燃烧室的温度分布由机侧向焦侧递增,以适应炭化室焦侧宽、机侧窄的情况。因此燃烧室内每个火道都能分别调节煤气量和空气量,以保证整个炭化室内焦炭能同时成熟。用焦炉煤气加热时,根据煤气入炉方式不同,可以通过灯头砖进行调节或更换加热煤气支管上的孔板进行调节。贫煤气和空气量的调节是利用在斜道口设置人工阻力,大型焦炉采用更换和排列不同厚度的

15、牛舌砖,可以达到调节气量的目的。 燃烧室材质关系到焦炉的生产能力和炉体寿命,一般均用硅砖砌筑。为进一步提高焦炉的生产能力和炉体的结构强度,其炉墙有发展为采用高密度硅砖的趋势。,炼焦炉,(2)加热水平高度 燃烧室顶盖高度低于炭化室顶部,二者之差称加热水平高度,这是为了保证使炭化室顶部空间温度不致过高,从而减少化学产品在炉顶空间的热解损失和石墨生成的程度。加热水平高度由以下三个部分组成:一是煤线距炭化室顶部的距离,即为炉顶空间高度,一般大型焦炉为300mm,中小型焦炉为150200mm;二是煤料结焦后的垂直收缩量,它取决于煤料的收缩性及炭化室的有效高度,一般为有效高度的5%7%;三是考虑到燃烧室顶部对焦炭的传热,炭化室中成熟后的焦饼顶面高应比燃烧室顶面高出200300mm(大焦炉)或100150mm(小焦炉)。因此不同高度的焦炉加热水平是不同的。如6m高的焦炉为900mm(1005mm),58型焦炉为600800mm,66型焦炉为524mm。加热水平高度按下列经验式确定:H=h+h+(200300),mm式中 h 煤线距炭化室顶部的距离(炭化室顶部空间高度),mm;h 装炉煤炼焦时产生的垂直收缩量,mm;200300 考虑燃烧室的辐射传热允许降低的燃烧室高度,mm。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 电子/通信 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号