植物进化的阶梯

上传人:油条 文档编号:1554296 上传时间:2017-06-25 格式:DOC 页数:10 大小:60.50KB
返回 下载 相关 举报
植物进化的阶梯_第1页
第1页 / 共10页
植物进化的阶梯_第2页
第2页 / 共10页
植物进化的阶梯_第3页
第3页 / 共10页
植物进化的阶梯_第4页
第4页 / 共10页
植物进化的阶梯_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《植物进化的阶梯》由会员分享,可在线阅读,更多相关《植物进化的阶梯(10页珍藏版)》请在金锄头文库上搜索。

1、植物进化的阶梯最早的光合作用产物不是氧气,而是硫磺;最早的根的作用不是为了吸收水分;进化早期的植物都需要水环境才能繁殖。在植物进化的阶梯上有太多太多让人意想不到的故事。距今 35 亿年前,光合作用第一次启动,地球上的生命世界从此有了稳定的能量来源。4.6亿年前,植物走上陆地,从此生命演化的舞台由海洋拓展到了陆地上。2.3 亿年前,随着种子和花等一系列结构的出现,植物繁殖摆脱了水环境的束缚,将绿色撒向了地球上的每个角落,为动物在不同环境下的繁殖提供了基础,催生了包括人类在内的以不同方式利用植物的动物和微生物。最终形成了我们今天看到的这个多姿多彩的生命世界。让我们一起去重温植物进化历史上那一个个精

2、彩的瞬间。生命世界的发动机叶绿体 当前,随着石油、煤炭这些传统化石燃料的日益短缺,世界各地的科学家都在绞尽脑汁开发可以替代传统燃料的新能源。他们不约而同地将目光投向了太阳,因为这个巨大的能源仓库每秒钟都会为地球送来 17 万亿千瓦的能源,相当于当今全球 1 年能源总消耗量的3.5 万倍。然而我们现有的太阳能电池板转化效率太低,即使把地球表面都铺满也无法提供足够的电能。正当我们望光兴叹的时候,大自然早在几十亿年前制造出了精巧而高效的太阳能发动机叶绿体。说叶绿体是生命世界的发动机一点都不为过。正是它们将太阳能转化为化学能,供植物生长繁殖,并通过食物链传递给动物和微生物,从而推动了地球生物界的生长、

3、繁殖和进化。当然,如此重要而精妙的发动机并不是一朝一夕就能开发出来的,从“设计”到“定型”足足耗费了 20 多亿年的时间。我们把目光投向 40 亿年前生命诞生之初的地球。这时的生命体都生活在原始海洋中,它们都是异养型的,也就是说,他们都不会制造营养物质,只能通过吞食分解有机物或者其他生命体供给自身生命所需。然而,环境中的有机物所提供的能源毕竟有限,为了能获得更多的生存机会,一些生命开始尝试利用太阳能这一巨大而稳定的能源。在大约距今 35 亿年前的时候,最初的光合生命光合细菌登上了进化的舞台。它们可以利用自身合成的菌绿素来完成对太阳能的吸收和转化。但是这个原始的光合系统有着很大的缺陷。一方面,菌

4、绿素转化光能的效率较低。另一方面,与现今植物利用水进行光合作用不同,光合细菌需要硫化氢作为反应物质。而硫化氢本身不稳定,且在环境中的含量较低,这大大限制了光合细菌的“工作量” 。尽管如此,光合细菌还是首次将太阳能引入了生命世界,为光合生物乃至整个生物界的进化奠定了基础。在随后的几亿年中,叶绿素 A 和藻胆蛋白替代了集光效率较低的菌绿素。在集光效率提高后,原先环境中“丰富”的硫化氢很快就消耗殆尽了。这时,出现了以蓝藻为代表的最早的植物,它们利用水当时广泛存在、用之不竭的物质,替代了硫化氢。这样就完全解决了光合作用反应物需求问题。同时,光合作用开始放出氧气,使整个生物界朝着能量利用效率更高的吸氧生

5、物的方向发展。这时的植物还没有叶绿体,由色素和蛋白质组成的光合反应器类囊体都分散在细胞质中。光合发动机初现雏形,但是效能还是不尽如人意。在完成初步的工作之后,大自然开始着手设计效能更高的发动机。首先,用“价格低廉”且工作效率较高的叶绿素 C 代替了合成“费用”高昂的藻胆蛋白。由于叶绿 A 和叶绿素 C 组成的光合作用系统更适应于海洋中的光照条件,因此使用这种发动机的植物(如硅藻、海带等)虽然占领了海洋,却只能生活在水环境中。因此,大自然对这样的“潜水”发动机仍然不甚满意。经过改进,用叶绿素 B 替代了叶绿素 C,最终设计出“原绿藻”型发动机叶绿体,它们成为细胞中专门进行光合作用的场所。这样一来

6、大大降低了能量传递的损耗,提高了光合作用的效率。经过磨合之后,这样的发动机终于具备了在水陆两栖条件下使用的功能,原绿藻也就成为现今所有陆生绿色高等植物的祖先。而这种强大的动力装置应用在所有绿色植物身上,直到今天。解决了能量来源之后,植物进入了发展的黄金时期,一场绿色革命就此拉开了序幕。新建的能量工厂叶片 在地球诞生之初,所有陆地都暴露在太阳剧烈的紫外线照射之下,生命只能依靠水来抵挡紫外线。因此最初的生命只能在海洋中和淡水中生存。在植物出现之后,光合作用逐步改变了大气的性质。大气中氧气的含量逐步增加,并且在紫外线的作用下形成了臭氧。臭氧层吸收了部分紫外线,减弱了地面的紫外线照射强度,为生物登陆创

7、造了条件。此时,植物开始了登陆的尝试。俗话说:“兵马未动,粮草先行。 ”要想在陆地上生存,首先就要解决吃饭问题。植物在水中生活时,气体和养分都可以在水和细胞之间直接交换得到,并且毫无缺水之忧。而一旦走上陆地,情况就大不相同了陆地上缺少水分,并且二氧化碳和氧气的浓度要比水中高得多。藻类植物的简单设备不仅无法进行正常的能量生产,甚至不能保证不脱水。于是一种新的能量工厂被建设起来,那就是叶片。 首先,出现防止叶片中水分快速丧失的叶表皮结构。这层透明的组织在允许阳光透过的同时,将水分锁在了叶片内部的叶肉细胞中。然而,仅有坚实的表皮还远远不够,因为光合作用还需要进行气体交换。如果表皮仅仅是一层严实的外壳

8、,那二氧化碳也进不去,氧气也出不来,整个反应也就无法进行了。因此植物在表皮上还留下了许多可以开合的进出关口气孔。有了这些关口,植物就可以在适当的时候吸入二氧化碳放出氧气,并且可以在水分过多时,适当排出水分。这样一来,表皮内部的叶肉细胞就可以安心地进行光合作用了。告别漂泊根 一提到根的作用,大家可能首先想到吸收水分和养分供植物生长。这两项是绝大多数植物根系的本职工作。然而,最早出现的根,作用却并非吸收水分和养分,而是将植物体固定在一个位置上,这种早期类型的根被称为假根,大型藻类(如海带)和苔藓所拥有的根就是假根。之所以称其为假根,是因为在这些根内部没有运输水分和养料的通道,并且在根的表面没有吸收

9、水分和养料所需的根毛。它仅有的作用就是固定植株。 在大型藻类和苔藓植物出现之前,植物(如单细胞藻类、球藻)的构造都比较简单,对外界的适应性较强,几乎都过着随波逐流的生活。而其后出现的大型藻类植物却需要相对稳定的环境才能生长和繁殖,因此部分细胞特化成了假根。尤其是登上陆地的苔藓植物,假根可以将它们固定在合适的生活环境中,降低风吹和水流的影响,提高生存几率。 正当苔藓植物在陆地上艰难站稳脚跟准备向前迈步的时候,忽然发现陆地上的大多数水都藏在土壤中。并且陆地上的矿物营养都是以固体形态出现的。苔藓的假根显然无能为力,于是它们只能收回迈出去的步子,退居到水边和潮湿环境中去了。 支撑绿色世界维管系统虽然苔

10、藓植物在征服陆地战役中败下阵来,这丝毫没有影响继任者的脚步。带有完整的土壤取水、输水系统的植物很快出现了(当然这里的快只是相对于漫长的地质年代来说,这个过程大约经历了 3000 万年) 。蕨类植物是第一种能够在陆地上广泛分布的植物。它们之所以能取得成功,其体内的维管系统功不可没。 在蕨类植物根和茎的皮层中存在首尾相连的细胞管胞,它们就是负责将水分和矿物质从根运送到叶片,并将光合作用生产出的养分从叶片送到根系的通道。这样专业的运输队伍,使运输效率成倍提高,也使得蕨类植物的个头可以比苔藓植物大得多。在蕨类植物中,水分和养料的运输都使用同一条通路。在更进化的裸子植物和被子植物中,这两条路线被分隔开来

11、,枝干中心木质部里的导管负责向叶片运输水分,而树皮中的管胞则负责从叶片向根运输养料,从而进一步提高了运输效率。植物的进化历程按照生物的五界分类系统,植物和动物作为生物的两个高层次分类阶元,是分别从另一个阶元原生生物界的一些不同门类中进化而来,而且与后者是呈并列关系的。这样的分类系统突出了生物各大阶元之间存在的从简单到复杂、由低级至高级的层次关系。但是,它也有不足之处。特别是没有反映现代生物的两个最基本和最进步类群动物与植物的系统关系及其历史渊源。实际上,植物与动物的祖先类型不仅都可以在原生生物中找到,而且它们在原始生物中的祖先类型甚至具有一定的同一性。这种同一性在现代的一种原始生物-眼虫身上还

12、可以找到。眼虫是一种生活在水中的单细胞原生生物。身体呈长梭形或圆柱形,前端有一个凹口,由此伸出一根鞭毛,其摆动在水中产生的反作用力能够推动身体运动;凹口的下方有一个具有感光机能的红色的眼点(眼虫的名称就因具有眼点而得) 。如果把它们放在含有有机物的水中,眼虫能够靠细胞膜吸取水里的有机物“食物” ,过着动物式的异养生活。这些性质使动物学家认为,眼虫是一种“原生动物” 。但是同时,眼虫的细胞却又有含叶绿素的叶绿体,能够进行光合作用,自己制造营养。因此,植物学家认为,它是一种“原生植物” ;由于它的细胞外面没有细胞壁,植物学家给它起了另外一个名字裸藻。眼虫的这种“动物植物双重性”使许多科学家相信,动

13、物与植物有共同的祖先它很可能就是与眼虫类似的、某种生活在远古水域中的单细胞原生生物。在漫长的进化过程中,它们当中的某些分子伴随着基因组的变化加强了运动、摄食的结构和功能,同时逐步“丢失”了进行光合作用的结构和功能,最终生活方式转变成为完全的异养;另外一些分子则伴随着基因组的其它方式的变化向着完全自养的方式转变。前一种方式代表着最早的动物的产生,后一种方式代表着最早的植物的出现。原始的原生动物和原生植物分异伊始都是单细胞的,随后,它们分别向多细胞方向发展。在古生物学界,对植物与动物分异时间的认识是随着化石的不断发现与积累、新的研究思想、研究方法的进步以及学科交叉的相互影响而不断更新的。早在达尔文

14、于 1859 年发表物种起源之时,他就同时以实事求是的科学态度提出了当时的进化论所存在的难点,其中之一就是著名的“寒武纪爆发” 。所谓的寒武纪爆发是指科学家在距今 5 亿 7 千万年前到 5 亿年前的地层中发现的似乎是突然出现的众多的化石动物类群,其中包括海绵动物、腔肠动物、环节动物、软体动物、节肢动物、腕足动物、棘皮动物以及原始的脊索动物。根据这些发现,一些科学家认为这些动物在地球上是以一种爆发式的过程突然地出现在地球上的,同时,这种动物的爆发也说明了动植物分野的开始,因此他们推测,动植物分异的时间近于 6 亿年前的寒武纪之初。到了 1949 年,古生物学家斯帕里格在澳大利亚南部阿得雷德山脉

15、以北的埃迪卡拉地区发现了数量众多的无骨骼的海洋无脊椎动物化石,并把这一化石动物群的时代判定为寒武纪早期。可是 10 年后,古生物学家格拉斯南经过对这个动物群的认真细致研究,得出了三个不同凡响的结论:(1)这个化石动物群中无论是腔肠动物、环节动物还是节肢动物,它们当中都没有发现任何寒武纪的属种;(2)这个化石群中的微体化石组成与好望角的微体化石组成毫不相同;(3)埋藏着这个化石动物群的邦特岩层有 1000 米厚,与它上面覆盖的寒武纪地层之间并不连续(这在地层学上叫做不整合接触) ,因此邦特岩层应属于与寒武纪不同的地质年代。在 1960 年召开的国际地质学大会上,科学界正式把这个化石动物群命名为埃

16、迪卡拉动物群。此后进行的多种手段绝对年龄的测定表明,埃迪卡拉动物群的年代为距今 6 亿 8 千万年至 6 亿 2 千万年。1974 年,国际地质科学联合会将埃迪卡拉动物群确定为前寒武纪晚期的动物群。至此,古生物学家把无脊椎动物在地球上大规模出现的时间推前了,因此动植物分异的时间也被认为比 6 亿年前更加久远。就在埃迪卡拉动物群被正确地重新认识的同时,以真核生物所形成的植物为主的植物化石的发现与研究也有了突破。1969 年克劳德在美国加利福尼亚东部的贝克泉组地层中发现了生活于 13 亿年前的单细胞的绿菌和金藻化石;1971 年舍夫和他的同事在澳大利亚苦泉组地层中发现了一些生存于 9 亿年前属于甲藻类、红藻类和绿藻类的植物化石。70 年代中期以来,前寒武纪的动植物化石的发现愈来愈多。一方面,已经发现的化石群在数量上和发现地点上都有增多,例如埃迪卡拉动物群现已经在西南非、北美、英国、斯堪的维纳半岛、苏联、中国等地的前寒武纪晚期地层中先后被发现,化石群的成员由最初的 5 个属发展到了 19 个属

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 电子/通信 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号