勾股定理16种证明方法

上传人:平*** 文档编号:14916557 上传时间:2017-11-03 格式:DOC 页数:9 大小:162.58KB
返回 下载 相关 举报
勾股定理16种证明方法_第1页
第1页 / 共9页
勾股定理16种证明方法_第2页
第2页 / 共9页
勾股定理16种证明方法_第3页
第3页 / 共9页
勾股定理16种证明方法_第4页
第4页 / 共9页
勾股定理16种证明方法_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《勾股定理16种证明方法》由会员分享,可在线阅读,更多相关《勾股定理16种证明方法(9页珍藏版)》请在金锄头文库上搜索。

1、 勾股定理的证明【证法 1】 (课本的证明)做 8 个全等的直角三角形,设它们的两条直角边长分别为 a、b,斜边长为 c,再做三个边长分别为 a、b、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b,所以面积相等. 即ba2142142 , 整理得 22c.【证法 2】 (邹元治证明)以 a、b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 21. 把这四个直角三角形拼成如图所示形状,使 A、E、B 三点在一条直线上,B、F、C 三点在一条直线上,C、G、D 三点在一条直线上. RtHAE RtEBF, AHE =

2、BEF. AEH + AHE = 90, AEH + BEF = 90. HEF = 18090= 90. 四边形 EFGH 是一个边长为 c 的正方形. 它的面积等于 c2. RtGDH RtHAE, HGD = EHA. HGD + GHD = 90, EHA + GHD = 90.又 GHE = 90, DHA = 90+ 90= 180. ABCD 是一个边长为 a + b 的正方形,它的面积等于 2ba. 2214cba. 22c.【证法 3】 (赵爽证明)以 a、b 为直角边(ba) , 以 c 为斜边作四个全等的直角三角形,则每个直角D G CFAHE Babcabcab c a

3、bcbabab abacbacbacbacbacbacbabac GDACBFEH ab abccA BCDE三角形的面积等于 ab21. 把这四个直角三角形拼成如图所示形状. RtDAH RtABE, HDA = EAB. HAD + HAD = 90, EAB + HAD = 90, ABCD 是一个边长为 c 的正方形,它的面积等于 c2. EF = FG =GH =HE = ba ,HEF = 90. EFGH 是一个边长为 ba 的正方形,它的面积等于 2ab. 2214cab. 2a.【证法 4】 (1876 年美国总统 Garfield 证明)以 a、b 为直角边,以 c 为斜边

4、作两个全等的直角三角形,则每个直角三角形的面积等于 21. 把这两个直角三角形拼成如图所示形状,使 A、E、B 三点在一条直线上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90, AED + BEC = 90. DEC = 18090= 90. DEC 是一个等腰直角三角形,它的面积等于21c.又 DAE = 90, EBC = 90, ADBC. ABCD 是一个直角梯形,它的面积等于 21ba. 2211caba. cb.【证法 5】 (梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a、b ,斜边长为 c. 把它们拼成如图那样的一个多边形,

5、使 D、E、F 在一条直线上. 过 C 作 AC 的延长线交 DF于点 P. D、E、F 在一条直线上, 且 RtGEF RtEBD, EGF = BED, EGF + GEF = 90, BED + GEF = 90, PHGFEDCBAabcabcabcabccccb acbaABCEF PQMN BEG =18090= 90.又 AB = BE = EG = GA = c, ABEG 是一个边长为 c 的正方形. ABC + CBE = 90. RtABC RtEBD, ABC = EBD. EBD + CBE = 90. 即 CBD= 90.又 BDE = 90,BCP = 90,BC

6、 = BD = a. BDPC 是一个边长为 a 的正方形.同理,HPFG 是一个边长为 b 的正方形.设多边形 GHCBE 的面积为 S,则,212Sbaac, 22c.【证法 6】 (项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a、b(ba) ,斜边长为 c. 再做一个边长为 c 的正方形. 把它们拼成如图所示的多边形,使 E、A、C 三点在一条直线上.过点 Q 作 QPBC,交 AC 于点 P. 过点 B 作 BMPQ,垂足为 M;再过点F 作 FNPQ,垂足为 N. BCA = 90,QPBC, MPC = 90, BMPQ, BMP = 90, BCPM 是一个矩

7、形,即MBC = 90. QBM + MBA = QBA = 90,ABC + MBA = MBC = 90, QBM = ABC,又 BMP = 90,BCA = 90,BQ = BA = c, RtBMQ RtBCA.同理可证 RtQNF RtAEF.从而将问题转化为【证法 4】 (梅文鼎证明).【证法 7】 (欧几里得证明)做三个边长分别为 a、b、c 的正方形,把它们拼成如图所示形状,使 H、C、B 三点cbacbaA BCD EFGHMLK 在一条直线上,连结BF、CD. 过 C 作 CLDE,交 AB 于点 M,交 DE 于点L. AF = AC,AB = AD,FAB = GAD

8、, FAB GAD, FAB 的面积等于21a,GAD 的面积等于矩形 ADLM的面积的一半, 矩形 ADLM 的面积 = 2.同理可证,矩形 MLEB 的面积 = b. 正方形 ADEB 的面积 = 矩形 ADLM 的面积 + 矩形 MLEB 的面积 22bac ,即 22ca.【证法 8】 (利用相似三角形性质证明)如图,在 RtABC 中,设直角边 AC、BC 的长度分别为 a、b,斜边 AB 的长为 c,过点 C 作 CDAB,垂足是 D. 在 ADC 和 ACB 中, ADC = ACB = 90,CAD = BAC, ADC ACB.ADAC = AC AB,即 ABDC2.同理可

9、证,CDB ACB,从而有 ABDC2. 22AB,即 2cba.【证法 9】 (杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a、b(ba) ,斜边长为 c. 再做一个边长为 c 的正方形. 把它们拼成如图所示的多边形. 过 A 作 AFAC,AF 交 GT于 F,AF 交 DT 于 R. 过 B 作 BPAF,垂足为 P. 过 D 作 DE 与 CB 的延长线垂直,垂足为E,DE 交 AF 于 H. BAD = 90,PAC = 90, DAH = BAC.又 DHA = 90,BCA = 90,AD = AB = c, RtDHA RtBCA. DH = BC = a,

10、AH = AC = b.由作法可知, PBCA 是一个矩形,所以 RtAPB RtBCA. 即 PB = A BDCacb98765432 1PQRTHGFEDCBAab cabccc CA = b,AP= a,从而 PH = ba. RtDGT RtBCA ,RtDHA RtBCA. RtDGT RtDHA . DH = DG = a,GDT = HDA . 又 DGT = 90,DHF = 90,GDH = GDT + TDH = HDA+ TDH = 90, DGFH 是一个边长为 a 的正方形. GF = FH = a . TFAF,TF = GTGF = ba . TFPB 是一个直

11、角梯形,上底 TF=ba,下底 BP= b,高 FP=a +(ba).用数字表示面积的编号(如图) ,则以 c 为边长的正方形的面积为543212SSc abb8 = a21,95, 82431SaS= 812S . 把代入,得 981212bc= 9 = 2a. 22ca.【证法 10】 (李锐证明)设直角三角形两直角边的长分别为 a、b(ba) ,斜边的长为 c. 做三个边长分别为a、b、c 的正方形,把它们拼成如图所示形状,使 A、E、G 三点在一条直线上. 用数字表示面积的编号(如图). TBE = ABH = 90, TBH = ABE.又 BTH = BEA = 90,BT = B

12、E = b, RtHBT RtABE. HT = AE = a. GH = GTHT = ba.又 GHF + BHT = 90,DBC + BHT = TBH + BHT = 90, GHF = DBC. DB = EBED = ba,HGF = BDC = 90, RtHGF RtBDC. 即 27S.过 Q 作 QMAG,垂足是 M. 由BAQ = BEA = 90,可知 ABEMHQRTG F ED CBAcba87654321 = QAM,而 AB = AQ = c,所以 RtABE RtQAM . 又 RtHBT RtABE. 所以 RtHBT RtQAM . 即 58S. 由 R

13、tABE RtQAM,又得 QM = AE = a,AQM = BAE. AQM + FQM = 90,BAE + CAR = 90,AQM = BAE, FQM = CAR.又 QMF = ARC = 90,QM = AR = a, RtQMF RtARC. 即 64S. 543212SSc, 12, 8732Sb,又 7, 58, 6, 873612ba= 524= 2c,即 2.【证法 11】 (利用切割线定理证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c. 如图,以 B 为圆心 a 为半径作圆,交 AB 及 AB 的延长线分别于 D、E,则 BD =

14、 BE = BC = a. 因为BCA = 90,点 C 在B 上,所以 AC 是B 的切线. 由切割线定理,得ADE2=B= ac= 2,即 2b, 2a.【证法 12】 (利用多列米定理证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c(如图). 过点 A 作ADCB,过点 B 作 BDCA,则 ACBD 为矩形,矩形 ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 BDACDA, AB = DC = c,AD = BC = a,AC = BD = b, 22B,即 22bc, a.【证法 13】 (作直角三角形的内切圆证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c. 作 RtABC 的内切圆O,切点分别为 D、E、F(如图) ,设O 的半径为 r.abaa B ACE DcbacabcA CBD AE = AF,BF = BD,CD = CE, BFACDBEABCA= = r + r = 2r,即 rcba2, . ,即 2224

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号