初等数学与高等数学的定位1

上传人:飞*** 文档编号:14747991 上传时间:2017-11-01 格式:DOC 页数:3 大小:20KB
返回 下载 相关 举报
初等数学与高等数学的定位1_第1页
第1页 / 共3页
初等数学与高等数学的定位1_第2页
第2页 / 共3页
初等数学与高等数学的定位1_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《初等数学与高等数学的定位1》由会员分享,可在线阅读,更多相关《初等数学与高等数学的定位1(3页珍藏版)》请在金锄头文库上搜索。

1、【标题】?浅谈高等数学在初等数学中的应用 【作者】袁 英 【关键词】?高等数学?初等数学?衔接?应用 【指导老师】杨天标 【专业】数学与应用数学 【正文】 1.引言 ?我们知道,初等数学与高等数学之间无论在观点上还是在方法上都有着很大的区别.正是如此,有人认为:学生不需要懂得什么高等数学知识 ,教师只要照课本讲下去 ,我们在课堂上不能把高等数学知识传授给学生,但我们仅仅停留在课本上是不够的,有时甚至连自己对一些初等数学的问题也可能感到费解,这是因为:一方面,高等数学是初等数学的继续和提高;另一方面,初等数学里很多理论遗留问题必须在高等数学中才能得澄清.因此,高等数学在初等数学中的作用不能掉以轻

2、心,下面谈谈一些初浅的体会. 2.初等数学与高等数学的定位 一般来说,数学史学家把数学的发展分为四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期(或五个时期,再加上当代时期).无论何种分发,都把第二发展时期叫做“初等数学时期”,这个时期的数学知识和经验就是“初等数学”,而把第三、第四或第三、四、五阶段叫做“高等数学时期”,这些阶段的数学知识和经验就是“高等数学”.理论意义下的初等数学和高等数学是按照恩格斯(Engles)的经典分发:所谓初等数学是指常量数学,高等数学就是指变量数学,并把笛卡尔(R.Descartes)1637 年发表的解析几何看成为出现高等数学或进入高等数学

3、时期的标志.而教育意义下的初等数学高等数学是依据教育的发展历程和教育的等级加以区分的,即视普通初等、中等教育(即中、小教育)阶段的数学主要内容为初等数学,视初等教育阶段的数学主要内容为初等数学,视高等教育的数学主要内容为高等数学?1.当然,由于社会和教育的思想、方法、手段尤为其是教育内容都在不断发展, “初等数学”和“ 高等数学”也是一个变化的客体对象,两者没有严格的概念区别.事实上,数学科学是一个不可分割的整体,它的生命力在于各部分之间的内在联系,这就需要深入研究初等数学,理清其中最基本的思想和方法,努力寻求初等数学和高等数学的结合点. 3.高等数学与初等数学的融合 大学生特别是师范类大学生

4、,一入学就发现,他们面对的问题好像同中学里学过的东西一点联系也没有,当然也很快就完全忘了中学所学的东西;但是毕业以后当了中学教师,他们突然发现,要按老师的教法来传授中学内容,由于缺乏指导,他们又很难辨明当前的中学教学内容和所学大学课程之间的联系.数学专业的大学生学到的专业知识是不少的,但许多重要高等数学对初等数学的渗透,注重用高等观点来研究初等数学,注重高等数学对初等数学的直接指导作用,总之,如果我们注重初等数学同高等数学的融合,我们就一定能克服上述弊端,就能平稳地实现中学学习-大学学习- 中学教学之间的过度?2?. 3.1 高等数学对初等数学的渗透 随着中学数学教学的改革,已有很多高等数学的

5、知识渗透到中学数学教学中去.近几年来,国际中学生奥林匹克数学竞赛的试题中,与初等数论有关的题目呈现增高的趋势.它牵涉到数论中整数的表示法、整除性理论与同余理论.如果我们在初等数论的教学过程中,注意把初等数论是理论同中学奥林匹克数学竞赛的内容结合起来讲,将会收到意想不到的效果. 多项式属于古典代数的范畴,这个课题的基本知识分散在中学一直到大学的课本中,如果我们在讲授多项式时,注意中学与大学间的衔接,注意它们间的关系,这将有助于提高大学生学习多项式的情趣. 渗透到中学数学教学中的内容除多项式、初等数论外,还有组合数学、不等式与向量代数等等.在讲授这些内容时,应将此内容与中学现行教材结合起来,这既能

6、提高学生学习这些内容的情趣,又有助于实现中学学习- 大学学习 -中学教学间的平稳过渡 ?3?. 3.2 高观点下的初等数学 作为一名准中学数学教师,仅仅懂一点初等数学是远远不过的,他必须具备较好的数学专业知识.观点越高,事物越显得简单.例如,在实数域里不好理解的某些东西,从复数域的观点看就清楚了;在欧氏空间里某些无法解释的现象,从射影空间的观点看,就有满意的说明;中学的最值问题,用导数来理解就清楚多了. 又如,从多项式及一元有理式函数的图象表示开始,由此得出曲线与坐标轴的交点就是多项式的零点,自然而然地引导到方程的近似数值解,曲线的几何图象自然地给微商和积分这两个概念提供了直观背景,曲线的斜率

7、引进微商,曲线与?轴围成的面积引进积分. 总之,许多高等数学的理论是建立在一些初等数学问题之上的,如果我们学习高等数学时,将这些问题联系起来,既能帮助我们学好高等数学,又有益于今后的中学数学教学. 3.3 高等数学与初等数学的融合应遵循 比较性原则:学习高等数学时,从方法上要和初等数学进行比较.例如选择一些既可以用高等数学又可以用初等数学解决的问题,分别采用两种方法讲解.通过这种对比性的讲解,学生就会体会到知识的相融性,激发他们的学习兴趣,提高他们的理解能力和认识水平.如证明三角形中位线定理、三角形三线定理、平行四边形对角线互相平分定理等等,除利用初等数学方法证明之外,还可以利用解析几何学中的

8、向量法证明. 发展性原则:高等数学是在初等数学的基础上发展的,那么,在高等数学的教学中应尽可能体现出这一点.例如,函数?,?的递增性,中学对这一问题通过观察图象直观描述的,没有给出理论上的证明,可以说是在中学阶段没有得到充分解决的问题.而在高等数学中,则通过求导数判定函数在某个区间上的递增性的方法来解决.即设?在? 内可导,当?时,有? ,则?在?内递增(?,? 为实数).?所以,函数?,在?上递增,由此得到理论上的证明.在教学中坚持这一原则,可使学生感到数学是发展的,从而激励他们不断地学习. 4.高等数学对初等数学的拓展 4.1 代数方面 集合:众说周知,集合论是现代数学的基础,集合概念是数

9、学中的一个原始概念.中小学数学中都贯穿了集合的思想,高中开始使用集合语言来研究问题,通过高中的学习,对集合的表示、集合之间的简单运算应该比较熟悉,对集合与集合之间的影射等有所了解.高等数学将在此基础上进一步考虑集合的运算,引入集合的“势”的概念,比较两个无穷集合的大小以及赋予集合某些数学结构(如代数结构、测度结构、拓扑) ,研究具有不同数学结构集合之间的映射关系.如代数学主要是研究具有代数结构集合之间的映射,如同态、同构、群、环、域等;而实数函数论主要是研究具有勒贝格测度的集合之间的映射,如可测函数. 函数及其性质:函数是数学上的一个基本而有重要的概念,从中学数学到高等数学,函数概念逐步从直观

10、向抽象发展、变量说、对应说(映射说) ,关系说是三种主要的定义方式.用“关系”来定义函数,比较抽象,一般不容易理解,在现代数学(如拓扑学、泛函分析等)中使用较多.对应说(映射说)是中学数学及一般高等数学中普遍采用的方式.映射是现代数学中的一个基本概念,它贯穿于现代数学各个分支,函数,变换等都是映射的例子. 中学数学中所讲的函数主要是六种基本初等函数:常值函数、幂函数、指数函数、对数函数、三角函数、反三角函数、研究它们的结构与形态(单调性、奇偶性、周期性).高等数学在此基础上定义了复合函数,初等函数等概念,使函数的量进一步扩展,进一步研究一般函数的奇偶性,单调性(用导数方法判断可导函数的单调性)

11、 、周期性(给出周期函数的一般定义以求周期的方法) 、有界性、极值性(用导数方法求极值) 、连续性、可导性、可积性、以及多项式函数的理论.由于现实中应用的许多函数都是初等函数,而初等函数又具有较好的分析性质,因而常成为研究抽象函数的例子、模型.微积分中函数的主体是初等函数,由基本初等函数到初等函数,衔接是比较紧密的. 数列、极限与级数:中学数学中讲到数列的定义,等差、等比数列以及它们的前?项的和与数列极限,这是数学分析中级数论与级数论的基础.极限法数学分析的一个主要方法,贯穿于数学分析的始终.中学数学中再给极限精确的定量定义.级数论中将研究无穷数列与函数列的和(级数)的收敛与发散,部分数列和的

12、求法,以及函数级数的和函数的分析性质,把函数展成级数等. 复数与复变函数论:中学数学中讲了复数的概念、表示法(代数形式、向量形式、三角形式) 、运算.复数的引进,完满的证明了高等代数的基本定理及多元二次型的分解等.另外,复变函数论研究的一类重要函数-解析函数(包括初等函数) ,只有在复数域中来讨论才能彻底弄清楚.因此,中学数学中的复数是复变函数论的一个重要基础,它们之间最好是按“螺旋式”上升方式来衔接. 排列、组合、二项式定理与概率论:中学数学中排列、组合、二项式定理及概率是高等数学中概率论与数理统计的基础.由于这部分内容与其它内容联系较少,学生普遍感到难学,有的教师也可能降低要求.但大部分概

13、率与统计的教材,都是在中学的基础上来编写的,它们是对随机现象演绎的研究与对随机现象统计规律归纳研究.因此,中学排列、组合、二项式定理的内容一点都不能削弱. 方程与方程组:中学数学中重要讲了一元一次、二元、三次方程及简单高次方程的解的情况,并没有对一般高次方程作深入讨论,方程组也大多是二元线性或三元线性方程组.高等数学中将对中学数学中的方程与方程组作推广,高等代数对高次方程的解(根)的情况将作全面讨论,明确五次(含五次)以上的方程无公式解,复系数一元?次方程必有? 个根.用行列式和矩阵理论来讨论? 元线性方程的解(存在性、解法、结构) ,用微积分研究微分方程与方程组的解等?4?. 4.2 几何方

14、面 立体几何与空间解析几何:中学平面几何主要包括相交线、平行线、三角形、四边形、面积、相似形和圆的一些概念及性质、点的轨迹的概念等内容.立体几何主要包括直线和平面的位置关系及其性质,多面体和旋转体的一些概念、性质、画法及表面积和体积的公式等内容.主要使学生会综合性处理几何的方法.而空间解析几何是在具有空间结构观念的基础上,用向量、变量与空间直线、柱面、锥面、旋转曲面与二次曲面及其一般理论,使学生学会解析地处理几何的方法. 平面解析几何与空间解析几何:中学平面解析几何主要讲平面上直线方程、圆锥曲线(二次曲线的几种简单形式)方程及形态、参数方程与极坐标等内容.空间解析几何将进一步研究二次曲线的一般

15、理论(二次曲线与直线的相关位置、二次曲线的渐进方向、中心、渐进线、切线、直径以及二次曲线的化简与分类等)和二次曲面的一般理论(二次曲面与直线的相关位置、二次曲面的渐进方向与中心、切线与切平面、径面与奇向、主径面与主方向、特征方程与特征根以及二次曲面的化简与分类等).空间解析几何是平面解析几何的自然延伸. 5.高等数学在初等数学的解题中的应用 5.1 用高等数学观点看初等数学不等式 布涅柯夫斯基不等式的应用 解析几何中矢量 X、Y 的内积(X、Y )可表为(X、Y)=|X|?|Y|Cos,其中|X|Y|为矢量 X、Y 的模,Cos 表示矢量 X 与 Y 夹角的余弦,?可推出著名的柯西布涅柯夫斯基

16、不等式?,当且仅当矢量 X,Y 共线(即 X,Y 线性相关)时等号才成立. 下面我们用柯西布涅柯夫斯基不等式来研究初等数学不等式. 例 1?若?,?那么?(? 当且仅当? 时“=”成立) 这个不等式是中学不等式证明的基础,这里我们用内积考虑其证明,设向量 X=?,Y=?,由解析几何知?,?=?,?由柯西布涅柯夫斯基不等?得?即?,显然?同号 ?或之一为零时?成立,若?异号? 因而?仍成立.当?时,向量 X 与向量 Y 重合即共线,柯西布涅柯夫斯基不等式取等号.5 例 2?已知?,求证? 此题在中学可用分析法或综合法证,这里引入向量?,?,由?知?即向量? 与?不共线,那么此时柯西布涅柯夫斯基不等式不能取等号即? 而?,? 因而?, 所以? ?詹森不等式的应用 在数学分析中,关于上凸(或下凹

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 幼儿/小学教育 > 其它小学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号