相关分析和一元线性回归课件

上传人:我*** 文档编号:146257675 上传时间:2020-09-28 格式:PPT 页数:60 大小:478KB
返回 下载 相关 举报
相关分析和一元线性回归课件_第1页
第1页 / 共60页
相关分析和一元线性回归课件_第2页
第2页 / 共60页
相关分析和一元线性回归课件_第3页
第3页 / 共60页
相关分析和一元线性回归课件_第4页
第4页 / 共60页
相关分析和一元线性回归课件_第5页
第5页 / 共60页
点击查看更多>>
资源描述

《相关分析和一元线性回归课件》由会员分享,可在线阅读,更多相关《相关分析和一元线性回归课件(60页珍藏版)》请在金锄头文库上搜索。

1、第 8 章 相关分析和线性回归,8.1 变量间关系的度量 8.2 一元线性回归的估计和检验 8.3 利用回归方程进行预测 8.4 用残差检验模型的假定,*,学习目标,相关关系的分析 参数的最小二乘估计 回归直线的拟合优度 回归方程的显著性检验 利用回归方程进行预测 用残差证实模型的假定 用 SPSS 做回归分析,*,子代与父代一样吗?,Galton被誉为现代回归和相关技术的创始人。1875年,Galton利用豌豆实验来确定尺寸的遗传规律。他挑选了7组不同尺寸的豌豆,并说服他在英国不同地区的朋友每一组种植10粒种子,最后把原始的豌豆种子(父代)与新长的豌豆种子(子代)进行尺寸比较 当结果被绘制出

2、来之后,他发现并非每一个子代都与父代一样,不同的是,尺寸小的豌豆会得到更大的子代,而尺寸大的豌豆却得到较小的子代。Galton把这一现象叫做“返祖”(趋向于祖先的某种平均类型),后来又称之为“向平均回归”。一个总体中在某一时期具有某一极端特征(低于或高于总体均值)的个体在未来的某一时期将减弱它的极端性(或者是单个个体或者是整个子代),这一趋势现在被称作“回归效应”。人们发现它的应用很广,而不仅限于从一代到下一代豌豆大小问题,*,子代与父代一样吗?,正如Galton进一步发现的那样,平均来说,非常矮小的父辈倾向于有偏高的子代;而非常高大的父辈则倾向于有偏矮的子代。在第一次考试中成绩最差的那些学生

3、在第二次考试中倾向于有更好的成绩(比较接近所有学生的平均成绩),而第一次考试中成绩最好的那些学生在第二次考试中则倾向于有较差的成绩(同样比较接近所有学生的平均成绩)。同样,平均来说,第一年利润最低的公司第二年不会最差,而第一年利润最高的公司第二年则不会是最好的 如果把父代和子代看作两个变量,找出这两个变量的关系,并根据这种关系建立适当的数学模型,就可以根据父代的数值预测子代的取值,这就是经典的回归方法要解决的问题。学完本章的内容你会对回归问题有更深入的理解,*,回归分析研究什么?,研究某些实际问题时往往涉及到多个变量。在这些变量中,有一个变量是研究中特别关注的,称为因变量,而其他变量则看成是影

4、响这一变量的因素,称为自变量 假定因变量与自变量之间有某种关系,并把这种关系用适当的数学模型表达出来,那么,就可以利用这一模型根据给定的自变量来预测因变量,这就是回归要解决的问题 在回归分析中,只涉及一个自变量时称为一元回归,涉及多个自变量时则称为多元回归。如果因变量与自变量之间是线性关系,则称为线性回归(linear regression);如果因变量与自变量之间是非线性关系则称为非线性回归(nonlinear regression),8.1 变量间的关系 8.1.1 变量间是什么样的关系? 8.1.2 用散点图描述相关关系 8.1.3 用相关系数度量关系强度,第 8 章 相关分析和线性回归

5、,*,怎样分析变量间的关系?,建立回归模型时,首先需要弄清楚变量之间的关系。分析变量之间的关系需要解决下面的问题 变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体变量之间的关系?,8.1.1 变量间是什么样的关系?,8.1 变量间的关系,*,函数关系,是一一对应的确定关系 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依赖于 x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 各观测点落在一条线上,*

6、,相关关系(几个例子),子女的身高与其父母身高的关系 从遗传学角度看,父母身高较高时,其子女的身高一般也比较高。但实际情况并不完全是这样,因为子女的身高并不完全是由父母身高一个因素所决定的,还有其他许多因素的影响 一个人的收入水平同他受教育程度的关系 收入水平相同的人,他们受教育的程度也不可能不同,而受教育程度相同的人,他们的收入水平也往往不同。因为收入水平虽然与受教育程度有关系,但它并不是决定收入的惟一因素,还有职业、工作年限等诸多因素的影响 农作物的单位面积产量与降雨量之间的关系 在一定条件下,降雨量越多,单位面积产量就越高。但产量并不是由降雨量一个因素决定的,还有施肥量、温度、管理水平等

7、其他许多因素的影响,*,相关关系(correlation),一个变量的取值不能由另一个变量唯一确定 当变量 x 取某个值时,变量 y 的取值对应着一个分布 各观测点分布在直线周围,8.1.2 用散点图描述相关关系,8.1 变量间的关系,*,散点图(scatter diagram),*,用散点图描述变量间的关系(例题分析),【例】为研究销售收入与广告费用支出之间的关系,某医药管理部门随机抽取20家药品生产企业,得到它们的年销售收入和广告费用支出(万元)的数据如下。绘制散点图描述销售收入与广告费用之间的关系,*,散点图(销售收入和广告费用的散点图),8.1.3 用相关系数度量关系强度,8.1 变量

8、间的关系,*,相关系数(correlation coefficient),度量变量之间线性关系强度的一个统计量 若相关系数是根据总体全部数据计算的,称为总体相关系数,记为 若是根据样本数据计算的,则称为样本相关系数,简称为相关系数,记为 r 也称为Pearson相关系数 (Pearsons correlation coefficient) 样本相关系数的计算公式,*,相关系数的性质,性质1:r 的取值范围是 -1,1 |r|=1,为完全相关 r =1,为完全正相关 r =-1,为完全负正相关 r = 0,不存在线性相关关系 -1r0,为负相关 0r1,为正相关 |r|越趋于1表示关系越强;|r

9、|越趋于0表示关系越弱,*,相关系数的性质,性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx 性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小 性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意为着, r=0只表示两个 变量之间不存在线性相关关系,并不说明变量之 间没有任何关系 性质5:r虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系,*,相关系数的经验解释,|r|0.8时,可视为两个变量之间高度相关 0.5|r|0.8时,可视为中度相关 0.3|r

10、|0.5时,视为低度相关 |r|0.3时,说明两个变量之间的相关程度极弱,可视为不相关 上述解释必须建立在对相关系数的显著性进行检验的基础之上,*,相关系数的显著性检验(检验的步骤),1.检验两个变量之间是否存在线性相关关系 采用R.A.Fisher提出的 t 检验 检验的步骤为 提出假设:H0: ;H1: 0 计算检验的统计量 用Excel中的【TDIST】函数得双尾计算P值,并于显著性水平比较,并作出决策 若P,拒绝H0,8.2 一元线性回归的估计和检验 8.2.1 一元线性回归模型 8.2.2 参数的最小二乘估计 8.2.3 回归直线的拟合优度 8.2.4 显著性检验,第 8 章 相关分

11、析和线性回归,8.2.1 一元线性回归模型,8.2 一元线性回归的估计和检验,*,什么是回归分析?(regression analysis),重点考察考察一个特定的变量(因变量),而把其他变量(自变量)看作是影响这一变量的因素,并通过适当的数学模型将变量间的关系表达出来 利用样本数据建立模型的估计方程 对模型进行显著性检验 进而通过一个或几个自变量的取值来估计或预测因变量的取值,*,一元线性回归,涉及一个自变量的回归 因变量y与自变量x之间为线性关系 被预测或被解释的变量称为因变量(dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变量称为自变量(indep

12、endent variable),用x表示 因变量与自变量之间的关系用一个线性方程来表示,*,一元线性回归模型(linear regression model),描述因变量 y 如何依赖于自变量 x 和误差项 的方程称为回归模型 一元线性回归模型可表示为 y = b0 + b1 x + e y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 0 和 1 称为模型的参数,*,一元线性回归模型(基本假定),因变量x与自变

13、量y之间具有线性关系 在重复抽样中,自变量x的取值是固定的,即假定x是非随机的 误差项 满足 正态性。 是一个服从正态分布的随机变量,且期望值为0,即 N(0 , 2 ) 。对于一个给定的 x 值,y 的期望值为E(y)=0+ 1x 方差齐性。对于所有的 x 值, 的方差一个特定的值,方差也都等于都相同。同样,一个特定的x 值, y 的方差也都等于2 独立性。独立性意味着对于一个特定的 x 值,它所对应的与其他 x 值所对应的不相关;对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关,*,估计的回归方程(estimated regression equation),

14、总体回归参数 和 是未知的,必须利用样本数据去估计 用样本统计量 和 代替回归方程中的未知参数 和 ,就得到了估计的回归方程 一元线性回归中估计的回归方程为,其中: 是估计的回归直线在 y 轴上的截距, 是直线的斜率,它表示对于一个给定的 x 的值, 是 y 的估计值,也表示 x 每变动一个单位时, y 的平均变动值,8.2.2 参数的最小二乘估计,8.2 一元线性回归的估计和检验,*,参数的最小二乘估计(method of least squares ),德国科学家Karl Gauss(17771855)提出用最小化图中垂直方向的误差平方和来估计参数 使因变量的观察值与估计值之间的误差平方和

15、达到最小来求得 和 的方法。即,用最小二乘法拟合的直线来代表x与y之间的关系与实际数据的误差比其他任何直线都小,*,Karl Gauss的最小化图,x,y,(xn , yn),(x1 , y1),(x2 , y2),(xi , yi),*,参数的最小二乘估计 ( 和 的计算公式), 根据最小二乘法,可得求解 和 的公式如下,8.2.3 回归直线的拟合优度,8.2 一元线性回归的估计和检验,*,变差,因变量 y 的取值是不同的,y 取值的这种波动称为变差。变差来源于两个方面 由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)的影响 对一个具体的观测值来说

16、,变差的大小可以通过该实际观测值与其均值之差 来表示,*,误差分解图,x,y,*,误差平方和的分解 (误差平方和的关系),SST = SSR + SSE,总平方和 (SST),回归平方和 (SSR),残差平方和 (SSE),*,误差平方和的分解 (三个平方和的意义),总平方和(SSTtotal sum of squares) 反映因变量的 n 个观察值与其均值的总误差 回归平方和(SSRsum of squares of regression) 反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和 残差平方和(SSEsum of squares of error) 反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和,*,判定系数R2 (coefficient of determina

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号