压力容器培训(2)

上传人:ahu****ng1 文档编号:146063751 上传时间:2020-09-25 格式:PPTX 页数:89 大小:2.62MB
返回 下载 相关 举报
压力容器培训(2)_第1页
第1页 / 共89页
压力容器培训(2)_第2页
第2页 / 共89页
压力容器培训(2)_第3页
第3页 / 共89页
压力容器培训(2)_第4页
第4页 / 共89页
压力容器培训(2)_第5页
第5页 / 共89页
点击查看更多>>
资源描述

《压力容器培训(2)》由会员分享,可在线阅读,更多相关《压力容器培训(2)(89页珍藏版)》请在金锄头文库上搜索。

1、GB150 钢制压力容器 Steel pressure vessels,主要内容,1、总论 2、受压元件 3、外压元件(园筒和球壳) 4、开孔补强 5、法兰 6、低温压力容器(附录C) 7、超压泄放装置(附录B),主要内容,1、总论 2、受压元件 3、外压元件(园筒和球壳) 4、开孔补强 5、法兰 6、低温压力容器(附录C) 7、超压泄放装置(附录B),1.1 GB150适用范围 压力:适用于设计压力不大于35MPa, 不低于0.1MPa及真空度高于0.02MPa 温度:钢材允许使用温度,1、总论,适用范围,适用范围,1、总论,1.2 GB150管辖范围 容器壳体及与其连为整体的受压零部件 1

2、)容器与外部管道连接 焊缝连接第一道环向焊缝端面 法兰连接第一个法兰密封面 螺纹连接第一个螺纹接头端面 专用连接件第一个密封面 2)接管、人孔、手孔等的封头、平盖及紧固件 3)非受压元件与受压元件焊接接头(如支座、垫板、吊耳等) 4)连接在容器上的超压泄放装置,1、总论,1.3 容器的失效形式 压力容器在载荷作用下丧失正常工作能力称之为失效。压力容器设计说到底是壁厚的计算,壁厚确定主要是对材料失效模式的判别: 弹性失效 壳体应力限制在弹性范围内,按弹性强度理论,壳体承载在弹性状态。 塑性失效 壳体应力限制在塑性范围内,按塑性强度理论,壳体承载在塑性状态。 爆破失效 壳体爆破是承载能力最大极限,

3、表示材料承载能力的极限。 压力容器失效表现为强度(断裂、泄漏)、刚度(泄漏、变形)和稳定性(失稳)。,1、总论,1.4 设计参数 1.4.1 压力(6个压力) Pw 正常工况下,容器顶部可能达到的最高压力 Pd 与相应设计温度相对应作为设计条件的容器顶部的最高压力 PdPW Pc 在相应设计温度下,确定元件厚度压力(包括静液柱) Pt 压力试验时容器顶部压力 Pwmax 设计温度下,容器顶部所能承受最高压力, 由受压元件有效厚度计算得到。 Pz 安全泄放装置动作压力 PwPz (1.05-1.1)Pw Pd Pz,1、总论,1.4 设计参数 1.4.2 温度 Tw 在正常工况下元件的金属温度,

4、实际工程中,往往以介质的温度表示工作温度。 Tt 压力试验时元件的金属温度,工程中也往往以试验介质温度来表示试验温度。 Td 在正常工况下,元件的金属截面的平均温度,由于金属壁面温度计算很麻烦,一般取介质温度加或减10-20得到。,1、总论,1.4 设计参数 1.4.3 壁厚(6个厚度) c 计算厚度,由计算公式得到保证容器强度,刚度和稳定的厚度 d 设计厚度,d =c +C2(腐蚀裕量) n 名义厚度,n =d +C1(钢材负偏差)+(圆整量) e 有效厚度,e=n-C1-C2=c+ min 设计要求的成形后最小厚度,minn-C1 (GB150 3.5.6壳体加工成形后最小厚度是为了满足安

5、装、运输中刚度而定;而min是保证正常工况下强度、刚度、寿命要求而定。) 坯 坯料厚度坯=d +C1+C3 (其中:C3 制造减簿量,主要考虑材料(黑色,有色)、工艺(模压,旋压;冷压,热压),所以C3值一般由制造厂定。),1、总论,各厚度之间的相互关系,1、总论,1.4 设计参数 1.4.4 许用应力 许用应力是材料力学性能与相应安全系数之比值: b/nb s/ns D/nD n/nn 当设计温度低于20取20的许用应力。,主要内容,1、总论 2、受压元件 3、外压元件(园筒和球壳) 4、开孔补强 5、法兰 6、低温压力容器(附录C) 7、超压泄放装置(附录B),2、受压元件园筒和球壳,2.

6、1园筒和球壳 园筒和球壳壁厚是根据弹性力学最大主应力理论中径公式导出:,中径(Di+)替代Di,2、受压元件园筒和球壳,是以 薄壁容器内径公式导出,认为应力是均匀分布。随壁厚增加K值增大,应力分布不均匀程度加大,当K=1.5时,由薄壁公式计算应力比拉美公式计算应力要低23%,误差较大;当采用(Di+)替代Di内径后,则其应力仅相差3.8%,这样扩大了公式应用范围(K1.5),误差在工程允许范围内。,园筒受力图,2、受压元件园筒和球壳,园筒环向应力是轴向应力2倍,最大主应力为环向应力,所以公式中焊接接头系数为纵向焊缝接头系数。,而球壳环向应力和径向应力是相等。按中径公式可推导出,球壳壁厚,适用范

7、围Pc0.6t,相当于K1.353 公式中焊接接头系数为所有拼接焊缝接头系数。,2、受压元件封头,2.2 封头 2.2.1 椭圆封头 1)应力分布 标准椭圆封头(a/b=2)应力分布:,2、受压元件封头,径向应力r为拉伸应力,封头中心最大,沿径线向封头底边逐渐减小。 周向应力封头中心拉伸应力,并沿径线向封头底边逐渐减小,由拉伸应力变为压缩应力,至底边压应力最大。且a/b越大,底部压应力愈大。出于上述考虑,GB150规定a/b2.6。 所以在内压作用下,封头短轴要伸长,长轴要缩短称之为趋园现象,在曲面与直边相连部分,封头底边径向收缩,园筒径向胀大,在边界力作用下产生附加弯距(弯曲应力),封头上最

8、大应力为薄膜应力和弯曲应力之和。,2、受压元件封头,2、受压元件封头,2.2.1 计算公式,a/b越大,越扁平,长轴收缩多,变形越大,应力也大。 K与Di/2hi关系查表 7.1,2、受压元件封头,3)稳定性 在内压作用下,长轴缩短,产生压应力,存在周向失稳可能,标准控制最小厚度来保证。(GB150 表7-1 下部说明) 在外压作用下,短轴缩短,产生压应力,球面部分存在失稳可能,用图表法进行校核计算。,2、受压元件封头,2.2 封头 2.2.2 碟形封头 1)应力分布 碟形封头由球面、环壳和园筒组成,应力分布与椭圆封头相似。 径向应力 r为拉伸应力,在球面部分均匀分布,至环壳应力逐渐减小,到底

9、边应力降至一半。 周向应力 在球面部分为均匀分布拉伸应力,环壳上为压缩应力,在连接点到底边逐渐减小,而在球面与环壳连接处最大。,碟形壳的应力与变形,2、受压元件封头,碟形封头与椭圆封头形状相似,不同点是应力与变形都是不连续的,而且有两个拐点(球面与环壳、环壳与园筒)在两个边界上产生附加力矩(弯曲应力) 在内压作用下,球面外凸,环壳内缩,园筒外胀。当r/R越小,球面与环壳处产生应力最大;r/R1趋于球壳,弯距0;所以蝶形封头最大应力在球面与环壳过度区。,2、受压元件封头,2)碟形封头的计算公式,Ri/r越大,变形越大,应力也大,所以M随R/r增大而增大, M与Ri/r查表7-3,3)稳定性,在内

10、压作用下,长轴缩短,产生压应力,存在周向失稳可能,标准控制最小厚度来保证。(GB150 表7-1 下部说明) 在外压作用下,短轴缩短,产生压应力,球面部分存在失稳可能,用图表法进行校核计算。,同椭圆形封头,2、受压元件封头,2.2 封头 2.2.3 锥形封头 1)定义 锥形封头半顶角60,以大端直径为当量园筒直径(Di/cos)方法计算(即按当量园筒一次薄膜应力计算)。 同一直径处周向应力等于轴向应力2倍;不同直径处,应力是不同的。 半顶角60,按园平板计算,此时应力以弯曲应力为主,与薄膜理论不适应的。 大端30采用无折边结构; 30带折边 小端45采用无折边结构; 45带折边,2、受压元件封

11、头,2)应力分析 大端 轴向力T2分解成沿母线方向N2和垂直与轴线方向P2。 N2 轴向拉伸应力 P2 大端径向收缩,产生径向弯曲应力,并使周向应力与压力作用产生周向应力,方向相反而相对减小,所以大端以一次轴向拉伸应力+二次轴向弯曲应力为强度控制条件,2、受压元件封头,2)应力分析 小端 轴向力T1分解成母线方向N1和垂直于轴线方向P1. N1 轴向拉伸应力 P1 小端径向张大,产生周向应力。此周向应力与压力作用产生周向应力方向一致,相互叠加,所以小端以一次周向应力+由边界力引起周向应力为强度条件控制值,2、受压元件封头,3)计算公式 锥壳厚度,由于受边界条件影响,是否需要在大、小端增设加强段

12、,由GB150 图7-11、7-13判断,交点在左边表示二次应力影响不大,不起控制作用,按上式计算即可;当交点在右边时,需增设加强段。 大端厚度: 小端厚度:,Q应力增值系数,体现边界应力作用。,通常情况下,锥壳为一个厚度。则应取上述三个厚度中最大值。,2、受压元件封头,2.2 封头 2.2.4平盖 平盖厚度是基于园平板在均布载荷作用下一次弯曲应力来计算: K为结构特征系数,分固支(焊接)和简支(螺栓)查表7-7。 比较两种边界条件下得最大挠度与最大应力,可知: 挠度反映板的刚度;应力则反映强度。 所以周边固支平盖的最大挠度和最大弯曲应力比周边简支要小,从强度和刚度要求,周边固支比周边简支的为

13、好。,休息时间,主要内容,1、总论 2、受压元件 3、外压元件(园筒和球壳) 4、开孔补强 5、法兰 6、低温压力容器(附录C) 7、超压泄放装置(附录B),3.1 失稳 外压元件承受的压应力,其破坏形式主要是失稳,失稳可分为周向失稳和轴向失稳。 周向失稳 断面由园形变成波形 轴向失稳 轴线由直线变成波形线,3、外压元件(园筒和球壳),周向压缩应力引起,轴向压缩应力引起,3、外压元件(园筒和球壳),3.2 外压容器的设计 外压容器园筒和球壳的设计主要是稳定性计算。 外压容器园筒壁厚的计算,主要是为了防止在外压作用下壳体的失稳。为了防止失稳,应使壳体防止失稳的许用压力P大于或等于计算压力Pc.园

14、筒稳定安全系数取3.0,球壳稳定安全系数取14.52。 1)周向失稳计算 外压容器壳体壁厚计算一般采用图算法,根据壳体直径(或半径),计算长度,假设壁厚(e)和所用材料牌号,利用图表查取系数,然后代入公式得到许用外压力P,使PPc ;否则重新计算直至合格为止。 2)轴向失稳计算 由园筒或管子的半径,壁厚e和所用材料牌号,用图表查取系数,代入公式得B值,使计算压力Pc小于或等于许用轴向压缩应力。许用轴向压缩应力取设计温度下材料许用应力和B值的较小值。,3、外压元件(园筒和球壳),3.3 防止外压园筒失稳措施 防止外压园筒失稳措施主要有: 1)增加园筒壁厚; 2)缩短园筒的计算长度; 3)设置加强

15、圈。 加强圈设置应整圈围绕在园筒上,并要求有足够截面积和组合惯性距。加强圈可设置在容器内部或外部。加强圈和园筒之间连接可采用连续焊或间断焊。间断焊外部不少于园筒周长的1/2,内部不少于1/3。,主要内容,1、总论 2、受压元件 3、外压元件(园筒和球壳) 4、开孔补强 5、法兰 6、低温压力容器(附录C) 7、超压泄放装置(附录B),4、开孔补强,4.1 适用范围 在筒体、封头上开圆孔,椭圆孔或长圆孔。非园孔的a/b2。 筒体 Di1500或凸形封头 d1/2Di(且筒体d520mm) 筒体 Di1500或锥形封头 d1/3Di(且筒体d1000mm),开孔不仅削弱容器强度,也造成局部应力集中

16、,是造成容器破坏重要因素,所以开孔补强是压力容器设计重要组成部分。,4、开孔补强,4.2 开孔补强形式与作用 1)型式 两种开孔补强型式整体补强和局部补强(补强圈) 整体补强 增加壳体厚度(经济性差) 厚壁管(推荐) 整体补强锻件与壳体焊接(嵌入式接管) GB150 P222 图J5 a),b) 局部补强 补强圈(推荐) 2)作用 内压容器对开孔截面拉伸强度补偿。 外压容器对开孔截面压缩稳定性补偿,防止失稳。,4、开孔补强,4.3 开孔补强的规定 1)不另行补强的最大开孔直径 应满足GB150 P75 8.3规定 2)采用补强圈补强要求 b540MPa ; 1.5n; n38mm 3)整体补强要求 下列情况之一,应采用整体补强(增加壳体厚度或采用补强锻件与壳体相焊)。HG20583 钢制化工容器结构规定。 b540MPa 1.5n n38mm Pd4.0MPa Td350

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号