变化率与导数教(学)案

上传人:l**** 文档编号:145742352 上传时间:2020-09-23 格式:DOC 页数:18 大小:910KB
返回 下载 相关 举报
变化率与导数教(学)案_第1页
第1页 / 共18页
变化率与导数教(学)案_第2页
第2页 / 共18页
变化率与导数教(学)案_第3页
第3页 / 共18页
变化率与导数教(学)案_第4页
第4页 / 共18页
变化率与导数教(学)案_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《变化率与导数教(学)案》由会员分享,可在线阅读,更多相关《变化率与导数教(学)案(18页珍藏版)》请在金锄头文库上搜索。

1、第三章 变化率和导数311瞬时变化率导数教学目标: (1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想教学过程:时速度我们是通过在一段时间的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的容以及上一节课学的是我们学习导数的一些实际背景一、复

2、习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间xA,xB上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?下面我们来看一个动画。从这个动画可以看出,随着点P沿曲线向点Q运动,随着点P无限逼近点Q时,则割线的斜率就会无限逼近曲线在点Q处的切线的斜率。所以我们可以用Q点处的切线的斜率来刻画曲线在点Q处的变化趋势二、新课讲解1、曲线上一点处的切线斜率不妨设P(x1,f(x1),Q(x0,f(x0),则割线PQ的斜率为,设x1x0=x,则x1 =xx0,当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当x无限趋近于0时,无限趋

3、近点Q处切线斜率。2、曲线上任一点(x0,f(x0)切线斜率的求法:,当x无限趋近于0时,k值即为(x0,f(x0)处切线的斜率。3、瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2) 位移的平均变化率:(3)瞬时速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时速度求瞬时速度的步骤:1.先求时间改变量和位置改变量2.再求平均速度3.后求瞬时速度:当无限趋近于0,无限趋近于常数v为瞬时速度(4)速度的平均变化率:(5)瞬时加速度:当无限趋近于0 时,无限趋近于一个常数,这个常数称为t=t0时的瞬时加速度注:瞬时加速度是速度对于

4、时间的瞬时变化率三、数学应用例1、已知f(x)=x2,求曲线在x=2处的切线的斜率。变式:1.求过点(1,1)的切线方程2.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_3.已知曲线上的一点P(0,0)的切线斜率是否存在?例2.一直线运动的物体,从时间到时,物体的位移为,那么为( )从时间到时,物体的平均速度; 在时刻时该物体的瞬时速度; 当时间为时物体的速度; 从时间到时物体的平均速度例3.自由落体运动的位移s(m)与时间t(s)的关系为s=(1)求t=t0s时的瞬时速度 (2)求t=3s时的瞬时速度 (3)求t=3s时的瞬时加速度点评:求瞬时速度,也就转化为求极限,瞬3.1.

5、2 导数的几何意义(1)教学目的:1. 了解平均变化率与割线之间的关系2. 理解曲线的切线的概率3. 通过函数的图像理解导数的几何意义教学重点函数切线的概念,切线的斜率,导数的几何意义教学难点理解导数的几何意义教学过程练习练习注意3.23导数的几何意义(2)教学目标:理解导数概念.掌握函数在一点处的导数定义及求法.掌握函数的导数的求法.教学重点:导数的概念及其求法.及几何意义。教学难点:对导数概念的理解.教学过程:复习引入1函数的导数值函数yf(x),如果自变量x在x0处有增量Dx,则函数y相应地有增量 Dyf(x0Dx)f(x0)比值就叫做函数yf(x)在x0到x0Dx之间的平均变化率,即

6、如果当x0时,有极限,我们就说函数yf(x)在点x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率) 记作f (x0) 或,即 f (x0)=2函数 yf(x) 的导函数如果函数在开区间(a, b)每点处都有导数,对于每一个x0(a,b),都对应着一个确定的导数f (x0)从而构成一个新的函数f (x)称这个函数为函数yf(x)在开区间的导函数简称导数也可记作y3导数的几何意义函数yf(x) 在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0, f(x0))处的切线的斜率也就是说,曲线yf(x)在点P(x0, f(x0))处的切线的斜率是f (x0)切线方程为 yy0f (x

7、0) (x0x0)练习:1当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数( A )A在区间x0,x1上的平均变化率B在x0处的变化率C在x1处的导数D在区间x0,x1上的导数2下列说确的是( C )A若f (x0)不存在,则曲线y = f (x)在点(x0, f (x0)处就没有切线B若曲线y = f (x)在点(x0, f (x0)处有切线,则f (x0)必存在C若f (x0)不存在,则曲线y = f (x)在点(x0, f (x0)处的切线斜率不存在D若曲线y = f (x)在点(x0, f (x0)处的切线斜率不存在,则曲线在该点处就没有切线3已知曲线求 点P处的切线

8、的斜率; 点P处的切线的方程解: 点P处的切线的斜率等于4在点P处的切线的方程是 即新课讲授:例1 教材例2。例2 教材例3。练习:甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图,试问:(1)甲、乙二人哪一个跑得快? (2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)乙跑的快;(2)乙跑的快.例3教材P10面第5题例4教材P11面第3题。例5已知:曲线与在处的切线互相垂直,求的值。例6已知点M (0, 1),F (0, 1),过点M的直线l与曲线在x = 2处的切线平行.(1)求直线l的方程;(2)求以点F为焦点,l为准线的抛物线C的方程.解:(1)= 0. 直线

9、l的斜率为0,其方程为y = 1.(2)抛物线以点F (0, 1)为焦点,y = 1为准线. 设抛物线的方程为x2 = 2py,则. 故抛物线C的方程为x2 = 4y.课堂小结导数的几何意义函数yf(x) 在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0, f(x0))处的切线的斜率也就是说,曲线yf(x)在点P(x0, f(x0))处的切线的斜率是f (x0)切线方程为 yy0f (x0) (x0x0)课 后 作 业324导数与导函数的概念教学目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义;2、过程与方法:先

10、理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。教学重点: 1、导数的求解方法和过程;2、导数符号的灵活运用教学难点:1、 导数概念的理解;2、导函数的理解、认识和运用教学过程一、情境引入在前面我们解决的问题:1、求函数在点(2,4)处的切线斜率。,故斜率为4 2、直线运动的汽车速度V与时间t的关系是,求时的瞬时加速度。,故瞬时加速度为2t 二、知识点讲解上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。归纳:一般的,定义在区间(,)上的函数,当无限趋近于

11、0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或,上述两个问题中:(1),(2)三、几何意义:我们上述过程可以看出在处的导数就是在处的切线斜率。四、例题选讲例1、求下列函数在相应位置的导数(1), (2),(3),例1、函数满足,则当x无限趋近于0时,(1) (2) 变式:设f(x)在x=x0处可导,(3)无限趋近于1,则=_(4)无限趋近于1,则=_(5)当x无限趋近于0,所对应的常数与的关系。总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例3、若,求和注意分析两者之间的区别。例4:已知函数,求在处的切线。导函数的概念涉及:的对于区间(,)上任意点处都可导,

12、则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。五、小结与作业例2、已知(1)求在处的导数;(2)求在处的导数.补充:已知点M(0,-1),F(0,1),过点M的直线与曲线在处的切线平行.(1)求直线的方程;(2)求以点F为焦点, 为准线的抛物线C的方程.331常见函数的导数一、教学目标:掌握初等函数的求导公式;二、教学重难点:用定义推导常见函数的导数公式一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。(1)求函数的改变量(2)求平均变化率(3)取极限,得导数 本节课我们将学习常见函数的导数。首先我们来求下面几个函数

13、的导数。(1)、y=x (2)、y=x2 (3)、y=x3 问题:,呢?问题:从对上面几个幂函数求导,我们能发现有什么规律吗?二、新授1、基本初等函数的求导公式: (k,b为常数) (C为常数) 由你能发现什么规律? (为常数) 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。例1、求下列函数导数。(1)(2)(3)(4)(5)y=sin(+x) (6) y=sin (7)y=cos(2x) (8)y=例2:已知点P在函数y=cosx上,(0x2),在P处的切线斜率大于0,求点P的横坐标的取值围。例3.若直线为函数图象的切线,求b的值和切点坐标.变式1.求曲线y=x2在点(1,1)处的切线方程.总结切线问题:找切点 求导数 得斜率变式2:求曲线y=x2过点(0,-1)的切线方程变式3:求曲线y=x3过点(1,1)的切线方程变式4:已知直线,点P为y=x2上任意一点,求P在什么位置时到直线距离最短.练习 求下列函数的导数: yx5; yx6; (3) (4) (5)例2求曲线和在它们交点处的两条切线与

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作范文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号