化学动力学基础(二)课件

上传人:我*** 文档编号:144687735 上传时间:2020-09-13 格式:PPT 页数:142 大小:2.33MB
返回 下载 相关 举报
化学动力学基础(二)课件_第1页
第1页 / 共142页
化学动力学基础(二)课件_第2页
第2页 / 共142页
化学动力学基础(二)课件_第3页
第3页 / 共142页
化学动力学基础(二)课件_第4页
第4页 / 共142页
化学动力学基础(二)课件_第5页
第5页 / 共142页
点击查看更多>>
资源描述

《化学动力学基础(二)课件》由会员分享,可在线阅读,更多相关《化学动力学基础(二)课件(142页珍藏版)》请在金锄头文库上搜索。

1、2020/9/13,物理化学电子教案第十一章,2020/9/13,11.1 碰撞理论,第十一章 化学动力学基础(二),11.2 过渡态理论,11.3 单分子反应理论,11.4 分子反应动态学简介,11.5 在溶液中进行的反应,11.6 快速反应的测试,11.7 光化学反应,11.8 催化反应动力学,2020/9/13,11.1 碰撞理论,速率理论的共同点,两个分子的一次碰撞过程,有效碰撞直径和碰撞截面,A与B分子互碰频率,两个A分子的互碰频率,硬球碰撞模型,碰撞参数,有效碰撞分数,反应截面,反应阈能,碰撞理论计算速率系数 的公式,反应阈能与实验活化能的关系,概率因子,碰撞理论的优缺点,2020

2、/9/13,速率理论的共同点,与热力学的经典理论相比,动力学理论发展较迟。先后形成的碰撞理论、过渡态理论都是20世纪后建立起来的,尚有明显不足之处。,理论的共同点是:首先选定一个微观模型,用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的方法,并经过统计平均,导出宏观动力学中速率系数的计算公式。,由于所采用模型的局限性,使计算值与实验值不能完全吻合,还必须引入一些校正因子,使理论的应用受到一定的限制。,2020/9/13,两个分子的一次碰撞过程,两个分子在相互的作用力下,先是互相接近,接近到一定距离,分子间的斥力随着距离的减小而很快增大,分子就改变原来的方向而相互远离,完成了一次碰撞过程。

3、,粒子在质心体系中的碰撞轨线可用示意图表示为:,2020/9/13,两个分子的一次碰撞过程,2020/9/13,有效碰撞直径和碰撞截面,运动着的A分子和B分子,两者质心的投影落在直径为 的圆截面之内,都有可能发生碰撞。,称为有效碰撞直径,数值上等于A分子和B分子的半径之和。,虚线圆的面积称为碰撞截面(collision cross section)。数值上等于 。,2020/9/13,A与B分子互碰频率,将A和B分子看作硬球,根据气体分子运动论,它们以一定角度相碰。,相对速度为:,互碰频率为:,2020/9/13,两个A分子的互碰频率,当体系中只有一种A分子,两个A分子互碰的相对速度为:,每次

4、碰撞需要两个A分子,为防止重复计算,在碰撞频率中除以2,所以两个A分子互碰频率为:,2020/9/13,硬球碰撞模型,将总的动能表示为质心整体运动的动能 和分子相对运动的动能 ,,两个分子在空间整体运动的动能 对化学反应没有贡献,而相对动能可以衡量两个分子相互趋近时能量的大小,有可能发生化学反应。,设A和B为没有结构的硬球分子,质量分别为 和 ,折合质量为 ,运动速度分别为 和 ,总的动能为,2020/9/13,碰撞参数(impact parameter),碰撞参数用来描述粒子碰撞激烈的程度,通常用字母b表示。,通过A球质心,画平行于 的平行线,两平行线间的距离就是碰撞参数b 。数值上:,在硬

5、球碰撞示意图上,A和B两个球的连心线 等于两个球的半径之和,它与相对速度 之间的夹角为 。,2020/9/13,碰撞参数(impact parameter),2020/9/13,有效碰撞分数,分子互碰并不是每次都发生反应,只有相对平动能在连心线上的分量大于阈能的碰撞才是有效的,所以绝大部分的碰撞是无效的。,要在碰撞频率项上乘以有效碰撞分数q。,2020/9/13,反应截面(cross section of reaction),式中br是碰撞参数临界值,只有碰撞参数小于br的碰撞才是有效的。,反应截面 的定义式为:,为反应阈能,从图上可以看出,反应截面是相对平动能的函数,相对平动能至少大于阈能,

6、才有反应的可能性,相对平动能越大,反应截面也越大。,2020/9/13,反应阈能(threshold energy of reaction),反应阈能又称为反应临界能。两个分子相撞,相对动能在连心线上的分量必须大于一个临界值 Ec,这种碰撞才有可能引发化学反应,这临界值Ec称为反应阈能。,Ec值与温度无关,实验尚无法测定,而是从实验活化能Ea计算。,2020/9/13,碰撞理论计算速率系数的公式,(1)(2)式完全等效,(1)式以分子计,(2)式以1mol计算。,2020/9/13,反应阈能与实验活化能的关系,实验活化能的定义:,碰撞理论计算速率系数的公式:,将与T无关的物理量总称为B:,总结

7、:阈能Ec与温度无关,但无法测定,要从实验活化能Ea计算。在温度不太高时,,Ea Ec,2020/9/13,概率因子(probability factor),概率因子又称为空间因子或方位因子。,由于简单碰撞理论所采用的模型过于简单,没有考虑分子的结构与性质,所以用概率因子来校正理论计算值与实验值的偏差。,P=k(实验)/k(理论),2020/9/13,概率因子(probability factor),(1)从理论计算认为分子已被活化,但由于有的分子只有在某一方向相撞才有效;,(2)有的分子从相撞到反应中间有一个能量传递过程,若这时又与另外的分子相撞而失去能量,则反应仍不会发生;,(3)有的分子

8、在能引发反应的化学键附近有较大的原子团,由于位阻效应,减少了这个键与其它分子相撞的机会等等。,理论计算值与实验值发生偏差的原因主要有:,2020/9/13,碰撞理论的优缺点,优点: 碰撞理论为我们描述了一幅虽然粗糙但十分明确的反应图像,在反应速率理论的发展中起了很大作用。,缺点:但模型过于简单,所以要引入概率因子,且概率因子的值很难具体计算。阈能还必须从实验活化能求得,所以碰撞理论还是半经验的。,对阿仑尼乌斯公式中的指数项、指前因子和阈能都提出了较明确的物理意义,认为指数项相当于有效碰撞分数,指前因子A相当于碰撞频率。,它解释了一部分实验事实,理论所计算的速率系数k值与较简单的反应的实验值相符

9、。,2020/9/13,11.2 过渡态理论,过渡态理论,双原子分子的莫尔斯势能曲线,三原子分子的核间距,势能面,势能面的类型,反应坐标,马鞍点,势能面剖面图,三原子体系振动方式,统计热力学方法计算速率系数,热力学方法计算速率系数,活化焓与实验活化能的关系,势能面投影图,过渡态理论的优缺点,2020/9/13,过渡态理论(transition state theory),过渡态理论是1935年由艾林(Eyring)和波兰尼(Polany)等人在统计热力学和量子力学的基础上提出来的。,他们认为由反应物分子变成生成物分子,中间一定要经过一个过渡态,而形成这个过渡态必须吸取一定的活化能,这个过渡态就

10、称为活化络合物,所以又称为活化络合物理论。,用该理论,只要知道分子的振动频率、质量、核间距等基本物性,就能计算反应的速率系数,所以又称为绝对反应速率理论(absolute rate theory)。,2020/9/13,双原子分子的莫尔斯势能曲线,莫尔斯(Morse)公式是对双原子分子最常用的计算势能Ep的经验公式:,式中r0是分子中双原子分子间的平衡核间距,De是势能曲线的井深,a为与分子结构有关的常数.,该理论认为反应物分子间相互作用的势能是分子间相对位置的函数。,2020/9/13,双原子分子的莫尔斯势能曲线,当rr0时,有引力,即化学键力。,时的能级为振动基态能级,E0为零点能。,AB

11、双原子分子根据该公式画出的势能曲线如图所示。,当rr0时,有斥力。,D0为把基态分子离解为孤立原子所需的能量,它的值可从光谱数据得到。,2020/9/13,双原子分子的莫尔斯势能曲线,2020/9/13,三原子分子的核间距,以三原子反应为例:,当A原子与双原子分子BC反应时首先形成三原子分子的活化络合物,该络合物的势能是3个内坐标的函数:,这要用四维图表示,现在令ABC=180,即A与BC发生共线碰撞,活化络合物为线型分子,则EP=EP(rAB,rBC),就可用三维图表示。,2020/9/13,三原子分子的核间距,2020/9/13,势能面,对于反应:,令ABC=180o, EP=EP(rAB

12、,rBC)。,随着核间距rAB和rBC的变化,势能也随之改变。,这些不同点在空间构成高低不平的曲面,称为势能面,如图所示。,2020/9/13,势能面,图中R点是反应物BC分子的基态,随着A原子的靠近,势能沿着RT线升高,到达T点形成活化络合物。,随着C原子的离去,势能沿着TP线下降,到P点是生成物AB分子的稳态。,D点是完全离解为A,B,C原子时的势能;OEP一侧,是原子间的相斥能,也很高。,2020/9/13,势能面,2020/9/13,势能面的类型,目前常见的势能面有两种:,一种是Eyring和Polanyi利用London对三原子体系的量子力学势能近似式画出的势能面称为London-E

13、yring-Polanyi势能面,简称LEP势能面。,另一种是Sato又在这个基础上进行了修正,使势垒顶端不合理的势阱消失,这样得到的势能面称为 London-Eyring-Polanyi-Sato势能面,简称LEPS势能面。,2020/9/13,反应坐标(reaction coordinate),反应坐标是一个连续变化的参数,其每一个值都对应于沿反应体系中各原子的相对位置。如在势能面上,反应沿着RTTP的虚线进行,反应进程不同,各原子间相对位置也不同,体系的能量也不同。,如以势能为纵坐标,反应坐标为横坐标,画出的图可以表示反应过程中体系势能的变化,这是一条能量最低的途径。,2020/9/13

14、,马鞍点(saddle point),在势能面上,活化络合物所处的位置T点称为马鞍点。,该点的势能与反应物和生成物所处的稳定态能量R点和P点相比是最高点,但与坐标原点一侧和D点的势能相比又是最低点。,如把势能面比作马鞍的话,则马鞍点处在马鞍的中心。从反应物到生成物必须越过一个能垒。,2020/9/13,马鞍点(saddle point),2020/9/13,势能面投影图,将三维势能面投影到平面上,就得到势能面的投影图。,图中曲线是相同势能的投影,称为等势能线,线上数字表示等势能线的相对值。,等势能线的密集度表示势能变化的陡度。,2020/9/13,势能面投影图,靠坐标原点(O点)一方,随着原子

15、核间距变小,势能急剧升高,是一个陡峭的势能峰。,在D点方向,随着rAB和rBC的增大,势能逐渐升高,这平缓上升的能量高原的顶端是三个孤立原子的势能,即D点。,反应物R经过马鞍点T到生成物P,走的是一条能量最低通道。,2020/9/13,势能面投影图,2020/9/13,势能面剖面图,沿势能面上R-T-P虚线切剖面图,把R-T-P曲线作横坐标,这就是反应坐标。以势能作纵坐标,标出反应进程中每一点的势能,就得到势能面的剖面图。,从剖面图可以看出:从反应物A+BC到生成物走的是能量最低通道,但必须越过势能垒Eb。,Eb是活化络合物与反应物最低势能之差,E0是两者零点能之间的差值。,这个势能垒的存在说

16、明了实验活化能的实质。,2020/9/13,势能面剖面图,2020/9/13,三原子体系振动方式,线性三原子体系有三个平动和两个转动自由度,所以有四个振动自由度:,(a)为对称伸缩振动,rAB与rBC相等;,(b)为不对称伸缩振动,rAB与rBC不等;,(c)和(d)为弯曲振动,分别发生在相互垂直的两个平面内,但能量相同。,2020/9/13,三原子体系振动方式,对于稳定分子,这四种振动方式都不会使分子破坏。,但对于过渡态分子,不对称伸缩振动没有回收力,会导致它越过势垒分解为产物分子。,所以这种不对称伸缩振动每振一次,就使过渡态分子分解,这个振动频率就是过渡态的分解速率系数。,2020/9/13,统计热力学方法计算速率系数,过渡态理论假设:,以三原子反应为例,设n是导致络合物分解的不对称伸缩振动的频率,其数值很小(可假定hnkBT).,1.反应物与活化络合物能按达成热力学平衡的方式处理;,2.活化络合物向产物的转化是反应的决速步。,2020/9/13,统计热力学方法计算速率系数,2020/9/13,统计热力学方法计算速率系

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号