生物化学_糖代谢PPT

上传人:y****8 文档编号:144511188 上传时间:2020-09-09 格式:PPT 页数:150 大小:3.91MB
返回 下载 相关 举报
生物化学_糖代谢PPT_第1页
第1页 / 共150页
生物化学_糖代谢PPT_第2页
第2页 / 共150页
生物化学_糖代谢PPT_第3页
第3页 / 共150页
生物化学_糖代谢PPT_第4页
第4页 / 共150页
生物化学_糖代谢PPT_第5页
第5页 / 共150页
点击查看更多>>
资源描述

《生物化学_糖代谢PPT》由会员分享,可在线阅读,更多相关《生物化学_糖代谢PPT(150页珍藏版)》请在金锄头文库上搜索。

1、物质代谢与调节,新陈代谢生命的最基本特征,ATP最主要的能量载体,概念及生理意义 器官和亚细胞定位 代谢途径的基本反应过程 关键酶及其主要调节 伴随着的能量代谢 代谢之间的联系及与疾病的关系,学习时应注意的几个方面,糖代谢,Metabolism of Carbohydrates,第 四 章,第 一 节 概 述,Introduction,糖(carbohydrates)由碳、氢、氧三种元素组成,是一类多羟醛或多羟酮及其衍生物或多聚物。,一、糖的化学,(一)糖的概念,(二)糖的分类及其结构,单糖、寡糖 (29)、多糖 (10)、结合糖,1. 单糖 不能再水解的糖,核糖(戊醛糖),半乳糖 (已醛糖)

2、,葡萄糖 (已醛糖),果糖 (已酮糖),2. 寡糖,常见的几种二糖有,麦芽糖(葡萄糖葡萄糖) 蔗 糖(葡萄糖果糖) 乳 糖(葡萄糖半乳糖),能水解生成几分子单糖的糖。,糖苷键,三糖:麦芽三糖、棉子糖等,3. 多糖 能水解生成多个单糖的糖。 常见的多糖有 淀粉、糖原、纤维素等。,4. 结合糖 糖与非糖物质的结合物 常见的结合糖有糖蛋白、蛋白聚糖、糖脂。,-1,4 糖苷键,-1,6 糖苷键,淀粉,糖 原,-1,4-糖苷键,-1,6- 糖苷键,-1,4-糖苷键,纤维素,二、糖的生理功能,1. 氧化供能,生理活性物质(NAD、FAD、ATP等);信息传递、免疫等;提供合成脂肪、胆固醇、核苷等物质的原料

3、。,人所需能量的5070来自糖;葡萄糖和糖原是体内重要的能源物质。,3. 其他生理功能,2. 参与组成人体组织结构,糖蛋白、糖脂是细胞膜的成分;糖蛋白、蛋白聚糖参与结缔组织及骨基质的组成;,三、糖的消化与吸收,(一)糖的消化,人类食物中的糖主要有植物淀粉、纤维素、麦芽糖、蔗糖、葡萄糖、乳糖、动物糖原等,其中以淀粉为主。,消化部位 主要在小肠,少量在口腔,糖的来源,淀粉,麦芽糖 + 麦芽三糖 (40%) (25%),-临界糊精 + 异麦芽糖 (30%) (5%),葡萄糖,唾液中的-淀粉酶,-葡萄糖苷酶,-临界糊精酶,胰液中的-淀粉酶,肠粘膜刷状缘,消化过程,蔗糖酶、乳糖酶 乳糖酶缺乏,(二)糖的

4、吸收,吸收部位 小肠上段 吸收形式 单糖(葡萄糖、果糖、半乳糖) 吸收途径,ADP+Pi,ATP,G,Na+,K+,小肠粘膜细胞,肠腔,门静脉,3. 吸收机制,Na+依赖型葡萄糖转运体 (Na+-dependent glucose transporter, SGLT),刷状缘,细胞内膜,4. 吸收途径,小肠肠腔,肠粘膜上皮细胞,门静脉,肝脏,体循环,SGLT,各种组织细胞,GLUT,GLUT:葡萄糖转运体(glucose transporter),已发现有5种葡萄糖转运体(GLUT 15)。,四、糖代谢的概况,葡萄糖,丙酮酸,有氧氧化,无氧 分解,H2O+CO2,乳酸,乳酸、氨基酸、甘油,糖原

5、,糖原 合成,磷酸戊糖 途径,核糖 + NADPH+H+,淀粉,第二节 糖的分解代谢,1.有氧氧化; 2.无氧分解,也称为糖酵解; 3.磷酸戊糖途径; 4.糖醛酸途径,有四条途径:,糖的无氧分解 (Glycolysis),在缺氧条件下,葡萄糖生成乳酸的过程称为糖的无氧分解,也称为糖酵解。,概念,反应部位,器官定位:各种组织 细胞定位:胞液,一、糖无氧分解的反应过程,糖酵解分为三个阶段,第一阶段 葡萄糖 3-磷酸甘油醛,第二阶段 3-磷酸甘油醛 丙酮酸,第三阶段 丙酮酸 乳酸, 葡萄糖磷酸化为6-磷酸葡萄糖,ATP ADP,Mg2+,己糖激酶 (葡萄糖激酶),葡萄糖,6-磷酸葡萄糖,(一)葡萄糖

6、转变为3-磷酸甘油醛,不可逆反应,哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为至型。肝细胞中存在的是型,称为葡萄糖激酶(glucokinase)。它的特点是: 对葡萄糖的亲和力很低 受激素调控, 6-磷酸葡萄糖转变为 6-磷酸果糖,6-磷酸葡萄糖,6-磷酸果糖, 6-磷酸果糖再磷酸化为1,6-双磷酸果糖,6-磷酸果糖,1,6-双磷酸果糖,不可逆反应,1,6-双磷酸果糖, 磷酸己糖裂解成2分子磷酸丙糖,醛缩酶,磷酸二羟丙酮,3-磷酸甘油醛, 磷酸二羟丙酮转变成3-磷酸甘油醛,3-磷酸甘油醛,磷酸二羟丙酮, 3-磷酸甘油醛氧化为1,3-二磷酸甘油酸,3-磷酸甘油醛,1,3-二磷酸 甘油酸,H

7、,糖酵解过程唯一的脱氢反应,(二)丙酮酸的生成,1,3-二磷酸甘油酸是高能化合物 G= 61kJ/mol, 1,3-二磷酸甘油酸转变成3-磷酸甘油酸,1,3-二磷酸 甘油酸,3-磷酸甘油酸,利用代谢底物分子内的高能键,直接使ADP磷酸化生成ATP,这种产生ATP的方式称为底物水平磷酸化。 (substrate level phosphorylation),H,可逆反应, 3-磷酸甘油酸转变为2-磷酸甘油酸,磷酸甘油酸 变位酶,3-磷酸甘油酸,2-磷酸甘油酸,H,H, 2-磷酸甘油酸转变为磷酸烯醇式丙酮酸,2-磷酸甘油酸,H,ADP,ATP,K+ Mg2+,丙酮酸激酶, 磷酸烯醇式丙酮酸转变成丙

8、酮酸,磷酸烯醇式丙酮酸,丙酮酸,不可逆反应 底物水平磷酸化,丙酮酸的去路,G2丙酮酸,进入线粒体继续氧化,乳酸,有氧,缺氧,(三) 丙酮酸还原为乳酸,丙酮酸,乳酸,乳酸的去路,释放入血,进入肝脏再进一步代谢。 分解利用 、糖异生,糖酵解的代谢途径,E2,E1,E3,关键酶/限速酶,1、催化不可逆反应,2、催化的反应速度最慢,3、受激素或代谢物的调节,5、活性的改变可影响整个反应体系 的速度和方向,特点,4、常是催化初始反应的酶,概念 指决定一个代谢途径方向和速度的酶,二、糖酵解的调节,细胞对糖酵解的调控是为了满足细胞对能量及碳骨架的需求。 关键酶所催化的部位是控制代谢反应的有力部位。,(一)

9、6-磷酸果糖激酶-1(PFK-1),* 别构调节,别构激活剂:AMP; ADP; F-1,6-2P; F-2,6-2P,别构抑制剂: 柠檬酸; ATP(高浓度),F-6-P,F-1,6-2P,ATP,ADP,PFK-1,磷蛋白磷酸酶,PKA,目 录,(二)丙酮酸激酶,1. 别构调节,别构抑制剂:ATP, 丙氨酸,别构激活剂:1,6-双磷酸果糖,2. 共价修饰调节,丙酮酸激酶,丙酮酸激酶,ATP,ADP,Pi,磷蛋白磷酸酶,(无活性),(有活性),PKA:蛋白激酶A (protein kinase A),CaM:钙调蛋白,(三) 己糖激酶或葡萄糖激酶,* 6-磷酸葡萄糖可反馈抑制己糖激酶,但肝葡

10、萄糖激酶不受其抑制。,* 长链脂肪酰CoA可别构抑制肝葡萄糖激酶。,三、糖酵解的生理意义,无线粒体的细胞,如:红细胞 代谢活跃的细胞,如:神经细胞、白细胞、骨髓、肿瘤细胞,最主要的生理意义是缺氧时迅速提供能量。这对肌肉收缩非常重要。,2.某些组织细胞依赖糖酵解供能。,糖酵解代谢小结,概念:在缺氧条件下,葡萄糖生成乳酸的过程称为糖酵解。 反应部位:胞浆 三个关键酶催化三步不可逆反应,葡萄糖,6-磷酸葡萄糖,己糖激酶,6-磷酸果糖,1,6-二磷酸果糖,6-磷酸果糖激酶-1,磷酸烯醇式丙酮酸,丙酮酸,丙酮酸激酶,产能的方式和数量 方式:底物水平磷酸化 净生成ATP数量: 从G开始 222 = 2AT

11、P 从Gn开始 221= 3ATP 意义 缺氧时迅速提供能量;为代谢活跃组织提供能量。,糖的有氧氧化 Aerobic Oxidation of Carbohydrate,糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。,* 部位:胞液及线粒体,* 概念,一、有氧氧化的反应过程,第一阶段:酵解途径,第二阶段:丙酮酸的氧化脱羧,第三阶段:三羧酸循环,G(Gn),第四阶段:氧化磷酸化,丙酮酸,乙酰CoA,H2O,O,ATP,ADP,TAC循环,胞液,线粒体,(一)丙酮酸的氧化脱羧,丙酮酸进入线粒体,氧化脱羧

12、为乙酰CoA (acetyl CoA)。,总反应式:,丙酮酸脱氢酶复合体的组成,酶 E1:丙酮酸脱氢酶 E2:二氢硫辛酰胺转乙酰酶 E3:二氢硫辛酰胺脱氢酶,丙酮酸脱氢酶复合体催化的反应过程,1. 丙酮酸脱羧形成羟乙基-TPP。 2. 由二氢硫辛酰胺转乙酰酶(E2)催化形成乙酰硫辛酰胺-E2。 3. 二氢硫辛酰胺转乙酰酶(E2)催化生成乙酰CoA, 同时使硫辛酰胺上的二硫键还原为2个巯基。 4. 二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺脱氢,同时将氢传递给FAD。 5. 在二氢硫辛酰胺脱氢酶(E3)催化下,将FADH2上的H转移给NAD+,形成NADH+H+。,CO2,CoASH,NAD

13、+,NADH+H+,5. NADH+H+的生成,1. -羟乙基-TPP的生成,2.乙酰硫辛酰胺的生成,3.乙酰CoA的生成,4. 硫辛酰胺的生成,目 录,三羧酸循环(Tricarboxylic acid Cycle, TAC)也称为柠檬酸循环,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸。由于Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环,它由一连串反应组成。,所有的反应均在线粒体中进行。,(二)三羧酸循环,* 概述,* 反应部位,-ketoglutarate,fumarate,NADH+H+,NAD+,NAD+,NADH+H+,GTP,GDP+Pi,FAD,

14、FADH2,NADH+H+,NAD+,柠檬酸合酶,顺乌头酸梅,异柠檬酸脱氢酶,-酮戊二酸脱氢酶复合体,琥珀酰CoA合成酶,琥珀酸脱氢酶,延胡索酸酶,苹果酸脱氢酶,目 录,小 结, 三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。 TAC过程的反应部位是线粒体。, 三羧酸循环的要点 经过一次三羧酸循环, 消耗一分子乙酰CoA, 经四次脱氢,二次脱羧,一次底物水平磷酸化。 生成1分子FADH2,3分子NADH+H+,2分子CO2, 1分子GTP。 关键酶有:柠檬酸合酶 -酮戊二酸脱氢酶复合体 异柠檬酸脱氢酶, 整个循环反

15、应为不可逆反应, 三羧酸循环的中间产物 三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为CO2及H2O。,表面上看来,三羧酸循环运转必不可少的草酰乙酸在三羧酸循环中是不会消耗的,它可被反复利用。但是,,例如:, 机体内各种物质代谢之间是彼此联系、相互配合的,TAC中的某些中间代谢物能够转变合成其他物质,借以沟通糖和其他物质代谢之间的联系。, 机体糖供不足时,可能引起TAC运转障碍,这时苹果酸、草酰乙酸可脱羧生成丙酮酸,再进一步生成乙酰CoA进入TAC氧化分解。,* 所以,草酰乙

16、酸必须不断被更新补充。,草酰乙酸,其来源如下:,(三)有氧氧化的调节,关键酶, 酵解途径:己糖激酶, 丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体, 三羧酸循环:柠檬酸合酶,丙酮酸激酶 6-磷酸果糖激酶-1,-酮戊二酸脱氢酶复合体 异柠檬酸脱氢酶,1. 丙酮酸脱氢酶复合体, 别构调节, 共价修饰调节,目 录,异柠檬酸 脱氢酶,柠檬酸合酶,-酮戊二酸 脱氢酶复合体,柠檬酸,Ca2+, ATP、ADP的影响, 产物堆积引起抑制, 循环中后续反应中间产物别位反馈抑制前面反应中的酶, 其他,如Ca2+可激活许多酶,2. 三羧酸循环的调节,有氧氧化的调节特点, 有氧氧化的调节通过对其关键酶的调节实现。 ATP/ADP或ATP/A

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号