传感器原理及其应用_第5章_压电式传感器课件

上传人:我*** 文档编号:142652744 上传时间:2020-08-22 格式:PPT 页数:80 大小:3.04MB
返回 下载 相关 举报
传感器原理及其应用_第5章_压电式传感器课件_第1页
第1页 / 共80页
传感器原理及其应用_第5章_压电式传感器课件_第2页
第2页 / 共80页
传感器原理及其应用_第5章_压电式传感器课件_第3页
第3页 / 共80页
传感器原理及其应用_第5章_压电式传感器课件_第4页
第4页 / 共80页
传感器原理及其应用_第5章_压电式传感器课件_第5页
第5页 / 共80页
点击查看更多>>
资源描述

《传感器原理及其应用_第5章_压电式传感器课件》由会员分享,可在线阅读,更多相关《传感器原理及其应用_第5章_压电式传感器课件(80页珍藏版)》请在金锄头文库上搜索。

1、第5章 压电式传感器 Piezoelectric Sensors,概述,压电式传感器是一种自发电式传感器。它以某些电介质的压电效应为基础,在外力作用下,在电介质表面产生电荷,从而实现非电量电测的目的。 压电传感元件是力敏感元件,它可以测量最终能变换为力的那些非电物理量,例如动态力、动态压力、振动加速度等,但不能用于静态参数的测量。 压电式传感器具有体积小、质量轻、频响高、信噪比大等特点。由于它没有运动部件,因此结构坚固、可靠性、稳定性高。,正压电效应(顺压电效应) 某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的一定表面上产生电荷,当外力去掉后,又重新恢复不带电状

2、态的现象。当作用力方向改变时,电荷极性也随着改变。输出电压的频率与动态力的频率相同;当动态力变为静态力时,电荷将由于表面漏电而很快泄漏、消失。,5.1压电效应(Piezoelectric-effect),逆压电效应(电致伸缩效应): 当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失的现象。,压电材料在外力作用下产生的表面电荷常用压电方程描述,为: 式中,qii面上的电荷密度(Ccm2);Qii面上的总电荷量(C);jj方向的应力(Ncm2);Fjj方向的作用力;dij压电常数(CN),(i=1,2,3,j=1,2,3,4,

3、5,6)。,压电方程中两个下标的含义如下:下标i表示晶体的极化方向,当产生电荷的表面垂于x轴(y轴或z轴)时,记i=1(或2,3)。下标j=1或2,3,4,5,6,分别表示沿x轴、y轴、z轴方向的单向应力,和在垂直于x轴、y轴、z轴的平面(即yz平面、zx平面、xy平面)内作用的剪切力。,单向应力的符号规定拉应力为正,压应力为负;剪切力的符号用右螺旋定则确定,如图中表示的方向。此外,还需要对因逆压电效应在晶体内产生的电场方向也作一规定,以确定dij的符号,使得方程组具有更普遍的意义。当电场方向指向晶轴的正向时为正,反之为负。,晶体在任意受力状态下所产生的表面电荷密度可由下列方程组决定:,式中,

4、q1、q2、q3垂直于x轴、y轴、z轴的平面上的电荷面密度; 1、2、3沿着x轴、y轴、z轴的单向应力; 4、5、6垂直于x轴、y轴、z轴的平面内的剪切应力; dij(i1,2,3,j1,2,3,4,5,6)压电常数。,天然结构石英晶体的理想外形是一个正六面体,在晶体学中它可用三根互相垂直的轴来表示,其中纵向轴ZZ称为光轴;经过正六面体棱线,并垂直于光轴的XX轴称为电轴(electrical axis) ;与XX轴和ZZ轴同时垂直的YY轴(垂直于正六面体的棱面)称为机械轴。,Z,X,Y,(a),(b),(a)理想石英晶体的外形 (b)坐标系,Z,Y,X,通常把沿电轴XX方向的力作用下产生电荷的

5、压电效应称为“纵向压电效应”,而把沿机械轴YY方向的力作用下产生电荷的压电效应称为“横向压电效应”,沿光轴ZZ方向受力则不产生压电效应。,5.2 压电材料和它的主要特性,5.2.1 石英晶体 1石英晶体的压电效应,石英晶体,天然形成的石英晶体外形,从石英晶体上切下一片平行六面体晶体切片,使它的晶面分别平行于X、Y、Z轴,如图。并在垂直X轴方向两面用真空镀膜或沉银法得到电极面。,Z,Y,X,b,l,石英晶体切片,h,双面镀银并封装,当晶片受到沿X轴方向的压缩应力X作用时,晶片将产生厚度变形,即纵向压电效应(Thickness expansion) ,并发生极化现象。,将上两式整理,得,综上所述,

6、在X轴方向施加压力时,左旋石英晶体的X轴正向带正电;如果作用力FX改为拉力,则在垂直于X轴的平面上仍出现等量电荷,但极性相反,见图(a)、(b)。,FX,FX,+,+,+,+,(a),(b),X,X,注:按前述坐标系为左旋石英晶体,右旋石英晶体 的结构与左旋石英晶体成镜像对称,压电效果极性相反。,如果在同一晶片上作用力是沿着机械轴的方向,则为横向压电效应(Transverse expansion),其电荷仍在与X轴垂直平面上出现,其极性见图(c)、(d),此时电荷的大小为,+,+,+,+,+,+,+,+,(c),(d),FY,FY,X,X,根据石英晶体轴对称条件:d11=d12,则上式为 式中

7、 h晶片厚度。 则其极间电压为:,式中 d12石英晶体在Y轴方向受力时的压电系数。,根据逆压电效应,晶片在Y轴方向将产生伸缩变形,即 或用应变表示:,由上述可知: 无论是正或逆压电效应,其作用力(或应变)与电荷(或电场强度)之间呈线性关系; 晶体在哪个方向上有正压电效应,则在此方向上一定存在逆压电效应; 石英晶体不是在任何方向都存在压电效应的。,(b),(a),+,+,-,-,-,Y,X,X,Y,硅氧离子的排列示意图 (a) 硅氧离子在Z平面上的投影 (b)等效为正六边形排列的投影,+,2石英晶体产生压电压电效应的机理,石英晶体具有压电效应,是由其内部结构决定的。组成石英晶体的硅离子Si4+和

8、氧离子O2-在Z平面投影,如图(a)。为讨论方便,将这些硅、氧离子等效为图(b)中正六边形排列,图中“”代表Si4+,“”代表2O2-。,当作用力FX=0时,正、负离子(即Si4+和2O2-)正好分布在正六边形顶角上,形成三个互成120夹角的偶极矩P1、P2、P3,如图(a)所示。此时正负电荷中心重合,电偶极矩的矢量和等于零,即 P1P2P30,Y,+,+,+,-,-,-,X,(a) FX=0,P1,P2,P3,FX,X,Y,+,+,+,+,FX,(b) FX0,+,+,+,-,-,-,P1,P2,P3,可见,当晶体受到沿X(电轴)方向的力FX作用时,它在X方向产生正压电效应,而Y、Z方向则不

9、产生压电效应。 晶体在Y轴方向力FY作用下的情况与FX相似。当FY0时,晶体的形变与图(b)相似;当FY0时,则与图(c)相似。由此可见,晶体在Y(即机械轴)方向的力FY作用下,使它在X方向产生正压电效应,在Y、Z方向则不产生压电效应。,(c) FX0,Y,+,+,+,-,-,X,-,+,+,+,FX,FX,P2,P3,P1,+,(P1+P2+P3)X0 (P1+P2+P3)Y=0 (P1+P2+P3)Z=0,当晶体受到沿X方向的拉力(FX0)作用时,其变化情况如图(c)。此时电极矩的三个分量为,在X轴的正向出现负电荷,在Y、Z方向则不出现电荷。,晶体在Z轴方向力FZ的作用下,因为晶体沿X方向

10、和沿Y方向所产生的正应变完全相同,所以,正、负电荷中心保持重合,电偶极矩矢量和等于零。这就表明,沿Z(即光轴)方向的力FZ作用下,晶体不产生压电效应。,5.2.2 压电陶瓷 1压电陶瓷的压电效应,2压电陶瓷压电效应产生的机理 压电陶瓷属于铁电体一类的物质,是人工制造的多晶压电材料,它具有类似铁磁材料磁畴结构的电畴结构。电畴是分子自发形成的区域,它有一定的极化方向,从而存在一定的电场。在无外电场作用时,各个电畴在晶体上杂乱分布,它们的极化效应被相互抵消,因此原始的压电陶瓷内极化强度为零,见图(a)。,直流电场E,剩余极化强度,剩余伸长,电场作用下的伸长,(a)极化处理前,(b)极化处理中,(c)

11、极化处理后,但是,当把电压表接到陶瓷片的两个电极上进行测量时,却无法测出陶瓷片内部存在的极化强度。这是因为陶瓷片内的极化强度总是以电偶极矩的形式表现出来,即在陶瓷的一端出现正束缚电荷,另一端出现负束缚电荷。由于束缚电荷的作用,在陶瓷片的电极面上吸附了一层来自外界的自由电荷。这些自由电荷与陶瓷片内的束缚电荷符号相反而数量相等,它起着屏蔽和抵消陶瓷片内极化强度对外界的作用。所以电压表不能测出陶瓷片内的极化程度,如图。,如果在陶瓷片上加一个与极化方向平行的压力F,如图,陶瓷片将产生压缩形变(图中虚线),片内的正、负束缚电荷之间的距离变小,极化强度也变小。因此,原来吸附在电极上的自由电荷,有一部分被释

12、放,而出现放电荷现象。当压力撤消后,陶瓷片恢复原状(这是一个膨胀过程),片内的正、负电荷之间的距离变大,极化强度也变大,因此电极上又吸附一部分自由电荷而出现充电现象。这种由机械效应转变为电效应,或者由机械能转变为电能的现象,就是正压电效应。, , , , ,极化方向,正压电效应示意图 (实线代表形变前的情况,虚线代表形变后的情况),F,同样,若在陶瓷片上加一个与极化方向相同的电场,如图,由于电场的方向与极化强度的方向相同,所以电场的作用使极化强度增大。这时,陶瓷片内的正负束缚电荷之间距离也增大,就是说,陶瓷片沿极化方向产生伸长形变(图中虚线)。同理,如果外加电场的方向与极化方向相反,则陶瓷片沿

13、极化方向产生缩短形变。这种由于电效应而转变为机械效应或者由电能转变为机械能的现象,就是逆压电效应。,逆压电效应示意图 (实线代表形变前的情况, 虚线代表形变后的情况), , , , ,极化方向,电场方向,由此可见,压电陶瓷所以具有压电效应,是由于陶瓷内部存在自发极化。这些自发极化经过极化工序处理而被迫取向排列后,陶瓷内即存在剩余极化强度。如果外界的作用(如压力或电场的作用)能使此极化强度发生变化,陶瓷就出现压电效应。此外,还可以看出,陶瓷内的极化电荷是束缚电荷,而不是自由电荷,这些束缚电荷不能自由移动。所以在陶瓷中产生的放电或充电现象,是通过陶瓷内部极化强度的变化,引起电极面上自由电荷的释放或

14、补充的结果。,压电陶瓷外形,5.2.3 压电材料的主要特性,压电材料主要特性: 转换性能。要求具有较大压电常数。 机械性能。压电元件作为受力元件,希望它的机械强度高、刚度大,以期获得宽的线性范围和高的固有振动频率。 电性能。希望具有高电阻率和大介电常数,以减弱外部分布电容的影响并获得良好的低频特性。 环境适应性强。温度和湿度稳定性要好,要求具有较高的居里点,获得较宽的工作温度范围。 时间稳定性。要求压电性能不随时间变化。,(1)石英晶体 石英(SiO2)是一种具有良好压电特性的压电晶体。其介电常数和压电系数的温度稳定性相当好,在常温范围内这两个参数几乎不随温度变化,如下两图。 由图可见,在20

15、200范围内,温度每升高1,压电系数仅减少0.016。但是当到573时,它完全失去了压电特性,这就是它的居里点。,1.00,0.99,0.98,0.97,0.96,0.95,20,40,60,80,100,120,140,160,180,200,dt/d20,斜率: 0.016/,t,石英的d11系数相对于20的d11温度变化特性,6,5,4,3,2,1,0,100,200,300,400,500,600,t/,相对介电常数,居里点,石英在高温下相对介电常数的温度特性,石英晶体的突出优点是性能非常稳定,机械强度高,绝缘性能也相当好。但石英材料价格昂贵,且压电系数比压电陶瓷低得多。因此一般仅用于标准仪器或要求较高的传感器中。 因为石英是一种各向异性晶体,因此,按不同方向切割的晶片,其物理性质(如弹性、压电效应、温度特性等)相差很大。在设计石英传感器时,根据不同使用要求正确地选择石英片的切型。,(2)水溶性压电晶体 属于单斜晶系的有酒石酸钾钠(NaKC4H4O64H2O),酒石酸乙烯二铵(C4H4N2O6,简称EDT),酒石酸二钾(K2C2H4O6H2O,简称DKT),

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号